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Let N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }. By a ring we mean a commutative
ring with unity. Let R be a ring. Denote by R∗ the group of all invertible

elements of R. The set of all irreducible elements in R will be denoted by
IrrR. By a domain we mean a commutative ring with unity without zero
divisors. An element r ∈ R is called nilpotent if there is n ∈ N such that
rn = 0.

The most important motivation for writing this paper is to quote the most
important results related to polynomial composites, their algebraic place in
mathematics and their application in cryptology.

D.D. Anderson, D.F. Anderson, M. Zafrullah in [2] called object A +
XB[X] as a composite, where A be a subdomain of the field B. If B be a
domain and M be an additive cancellative monoid (a semigroup with neutral
element and cancellative property) we can define a monoid domain B[M ] =
{a0Xm0 + · · · + anX

mn : a0, . . . , an ∈ B,m1, . . .mn ∈ M}. If M = N0, then
B[M ] = B[X]. Monoid domains appear in many works, for example [8], [16].

There are a lot of works where composites are used as examples to show
some properties. But the most important works are presented below.

In 1976 [4] authors considered the structures in the form D + M , where
D is a domain and M is a maximal ideal of ring R, where D ⊂ R. Later
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(2.6), we could prove that in composite in the form D +XK[X], where D is
a domain, K is a field with D ⊂ K, that XK[X] is a maximal ideal of K[X].
Next, Costa, Mott and Zafrullah ([5], 1978) considered composites in the form
D + XDS[X], where D is a domain and DS is a localization of D relative
to the multiplicative subset S. In 1988 [3] Anderson and Ryckaert studied
classes groups D + M . Zafrullah in [17] continued research on structure
D +XDS[X] but he showed that if D is a GCD-domain, then the behaviour
of D(S) = {a0 +

∑
aiX

i | a0 ∈ D, ai ∈ DS} = D + XDS[X] depends upon
the relationship between S and the prime ideals P od D such that DP is
a valuation domain (Theorem 1, [17]). Fontana and Kabbaj in 1990 ([7])
studied the Krull and valuative dimensions of composite D + XDS[X]. In
1991 there was an article ([2]) that collected all previous composites and the
authors began to create a theory about composites creating results. In this
paper, the structures under consideration were officially called as composites.
After this article, various minor results appeared. But the most important
thing is that composites have been used in many theories as examples. In
[10] we have a general definition of composite as polynomial composite.

In the second section we can find many results about polynomial compos-
ites and monoid domains. Basic algebraic properties such as irreducible ele-
ments, nilpotents and ideals have been examined. Theorem 2.6 is especially
worth noting. In this theorem, for A ⊂ B be fields, we can note that every
nonzero prime ideal polynomial composites is maximal, every prime ideal

different from some maximal ideal of polynomial composite is principal and
every polynomial composites are atomic (every element of polynomial com-
posites be a product of finite irreducibles(atoms)). In Theorem 2.9 we have
an iformation about irreducibles of monoid domain. In the second part of the
second section we have results about ACCP and atomic properties. Recall,

ascending chain of principal ideals of ring R: I1⊂ I2⊂I3 ⊂ ,
there is n ∈ N such that In = In+1 = . . . . A domain with ACCP property
is called ACCP-domain. Every ACCP-domain be atomic. In Theorem 2.23
it turns out that the polynomial composite of the form K + XL[X] (where
K ⊂ L be fields) is a Dedekind ring. This is a very important class of rings
in algebra.

In the third section we can find relationships between a theory of polyno-
mial composites and Galois theory. Galois theory contributed greatly to the
development of many fields, not only in mathematics. Particularly notewor-
thy is the solution of three ancient problems of construction with a compass
and a straightedge in the 19th century. The results in this section, under
different assumptions, boil down to the relationship between field extensions
and Noetherian rings. Recall a Noetherian ring is called a ring with ACCP-
property. Equivalence, a ring such that every ideal be a finite generated.
In Theorems 3.13 and 3.14 we combine the Magid’s results with the cur-
rent results to create a complete characterization of field extensions using
polynomial composites and idempotents. Recall, an element e ∈ R is called
idempotent if e2 = e holds. For example, in Z we have two trivial idempo-
tents 0 and 1.
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Sections four and five are reminder from [12] a generalized RSA cipher
and a Diffie-Hellman protocol key exchange. Such a reminder is purposeful
because we want to draw attention to the replacement of the finite alphabet
with the infinite one and the replacement of classical prime numbers with
prime ideals. Such a swap will be extremely difficult for third person to
break.

In sections six and seven we have cryptosystems which use the structure
Dedekind. The former uses this structure in the key, and the latter uses it
in two different alphabets. Of course, these ciphers can be generalized to
infinite alphabets and ideals.

Section eight shows a cryptosystem based on polynomial composites. Sec-
tion nine shows a cryptosystem based on monoid domains. Note that in the
last cryptosystem, in order to break it, the discrete logarithm calculation
should be used. At the moment, there is no mathematical way to facilitate
the computation of discrete logarithms. We can count using computers, but
here the algorithm would consist in checking each successive number, not on
a specific indication of the number. And this is a great difficulty in breaking
the last cryptosystem.

In this section we introduce the most important facts about polynomial
composites and monoid domains in math.

Let’s start from the following Lemma which is very easy to proof.

Tn, T be rings, Tn ⊂ T .

Now let’s look at invertible and nilpotent elements.

Let f = a0 +a1X + · · ·+anX
n ∈ T for any n ∈ N0. Then

f ∈ T ∗ if and only if a0 ∈ A∗ and a1, a2, . . . , an are nilpotents.

We know that if R is a ring then f = a0 + a1X + · · ·+ anX
n ∈ R[X]∗

if and only if a0 ∈ R∗ and a1, a2, . . . , an are nilpotents. In our Proposition
we have a1, a2, . . . , an are nilpotents. Of course we get a0 ∈ A∗.

Let f = a0 + a1X + . . . an−1X
n−1 + anX

n + · · ·+ amX
m ∈

Tn, where 0 ≤ n ≤ m and ai ∈ Ai for i = 0, 1, . . . , n and aj ∈ B for
j = n, n + 1, . . . ,m.

(i) f ∈ T ∗n if and only if a0 ∈ A∗0 and a1, a2, . . . , am are nilpotents.

(ii) f be a nilpotent if and only if a0, a1, . . . , am are nilpotents.

Analogous proof like in Proposition 2.2.

II. Polynomial Composites and Monoid Domains

Lemma 2.1. 

Proposition 2.2. 

Proof. 

Proposition 2.3. 

Proof. 

A Polynomial Composites and Monoid Domains as Algebraic Structures and their Applications
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Let B be a domain and f = am1X
m1 + am2X

m2 + · · · +
amnX

mn ∈ B[M ], where m1,m2, . . . ,mn ∈M and am1 , am2 , . . . , amn ∈ B.
Proposition 2.4. 

T = A + XB[X],Let Tn = A0 + A1X + · · · + An−1X
n−1 + XnB[X

A, B, A0, A1, . . . , An be domains such that A ⊂ B, A0 ⊂ A1 ⊂ · · · ⊂
An−1 ⊂ B.”

]
where



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(i) f ∈ B[M ]∗ if and only if there exist mi ∈ M such that ami
∈ B∗ and

mi = 0 and for every mk 6= mi we have amk
be nilpotents.

(ii) f be a nilpotent if and only if am1 , am2 , . . . , amn are nilpotents.

(i) Assume f ∈ B[M ]∗. Then there exists g = bm′
1
Xm′

1 + bm′
2
Xm′

2 +

· · · + bm′
n
Xm′

n , where m′1,m
′
2, . . . ,m

′
n ∈ M and bm′

1
, bm′

2
, . . . , bm′

n
∈ B such

that fg = 1. Hence there exist mi,mj ∈ M such that ami
bmj

Xmi+mj = 1.
We have ai ∈ B∗ and mi,mj = 0. The rest of coefficients are nilpotents. On
the other side of the proof it is easy.

(ii) Obvious.

Let’s recall Theorem from [2] (Theorem 2.9) in a different form.

Let A be a subfield of B. Consider D = A + XB[X]. Then
IrrD = {aX, a ∈ B} ∪ {a(1 + Xf(X)), a ∈ A, f ∈ B[X], 1 + Xf(X) ∈
IrrB[X]}.

Consider T = A + XB[X], where A be a subfield of B;
Tn = A0 + A1X + A2X

2 · · ·+ An−1X
n−1 + XnB[X], where A0 ⊂ A1 ⊂ A2 ⊂

· · · ⊂ An−1 ⊂ B be fields. Then

(i) every nonzero prime ideal of T (Tn, respectively) is maximal;

(ii) every prime ideal P different from A1X + A2X
2 + · · · + An−1X

n−1 +
XnB[X] (in Tn) is principal;

(iii) every prime ideal P different from XB[X] (in T ) is principal;

(iv) Tn is atomic, i.e., every nonzero nonunit of T is a finite product of
irreducible elements (atoms);

(v) T is atomic.

(i) . We proof for Tn. The proof for T will be a corollary.

First note that A1X + A2X
2 + · · ·+ An−1X

n−1 + XnB[X] is maximal since
Tn/A1X + A2X

2 + · · · + An−1X
n−1 + XnB[X] ∼= A0. Let P be a nonzero

prime ideal of Tn. Now X ∈ P implies (Tn/A1X +A2X
2 + · · ·+An−1X

n−1 +
XnB[X])2 ⊆ P and hence A1X +A2X

2 + · · ·+An−1X
n−1 +XnB[X] ⊆ P so

P = A1X+A2X
2+· · ·+An−1X

n−1+XnB[X]. So suppose that X /∈ P . Then
for N = {1, X,X2, . . . }, PN is a prime ideal in the PID B[X,X−1] = Tn,N .
(In fact, B[X,X−1] ⊆ RP and RP is a DVR (discrete valuation ring)). So P
is minimal and is also maximal unless P ( A1X +A2X

2 + · · ·+An−1X
n−1 +

XnB[X]. But let knX
n + · · ·+ksX

s ∈ P with kn ∈ N0, where kn, . . . , ks ∈ B
for any n, s. Then Xn+1 + k−1n kn+1X

n+2 + · · · + k−1n ksX
s ∈ P , so X /∈ P

implies that 1 + k−1n kn+1X + · · ·+ k−1n ksX
s−n ∈ P , a contradiction. So every

nonzero prime ideal is maximal.

Theorem 2.5. 

Proof. 

Theorem 2.6. 

Proof. 
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an−1X
n−1 +Xnf(X), where ai ∈ Ai for i = 1, 2, . . . , n− 1 and f(X) ∈ B[X].

Now if 1 + a1X + a2X
2 + · · · + an−1X

n−1 + Xnf(X) can be factored in
A1X + A2X

2 + · · · + An−1X
n−1 + XnB[X] it can be written as (1 + b1X +

b2X
2+· · ·+bn−1X

n−1+Xng(X))(1+c1X+c2X
2+· · ·+cn−1X

n−1+Xnh(X)),
where bi, ci ∈ Ai for i = 1, 2, . . . , n − 1 and g(X), h(X) ∈ B[X]. Hence

1 + a1X + a2X
2 + · · ·+ an−1X

n−1 + Xnf(X) is irreducible in Tn if and only
if it is irreducible in A1X + A2X

2 + · · ·+ An−1X
n−1 + XnB[X].

Now let 1 + a1X + a2X
2 + · · · + an−1X

n−1 + Xnf(X) be irreducible in Tn

and suppose that 1 + a1X + a2X
2 + · · · + an−1X

n−1 + Xnf(X) | k(X)l(X)
in Tn. Then 1 + a1X + a2X

2 + · · · + an−1X
n−1 + Xnf(X) | k(X)l(X) in

A1X + A2X
2 + · · · + An−1X

n−1 + XnB[X], and so in A1X + A2X
2 + · · · +

An−1X
n−1+XnB[X] we have, say 1+a1X+a2X

2+· · ·+an−1X
n−1+Xnf(X) |

k(X). Then, in A1X + A2X
2 + · · · + An−1X

n−1 + XnB[X], k(X) = (1 +
a1X + a2X

2 + · · ·+ an−1X
n−1 +Xnf(X))d(X). Now d(X) can be written as

d(X) = aXr(1+a1X+a2X
2+· · ·+an−1X

n−1+Xnp(X)). If r > 0, d(X) ∈ Tn,
while if r = 0, k(X) = (1+a1X+a2X

2+· · ·+an−1X
n−1+Xnf(X))(b(1+b1X+

b2X
2 + · · ·+ bn−1X

n−1 + Xnp(X)) and b ∈ A0 because k(X) ∈ Tn. In either
case, d(X) ∈ Tn and so 1 + a1X + a2X

2 + · · ·+ an−1X
n−1 + Xnf(X) | k(X)

in Tn. Consequently, in Tn every irreducible element of the type 1 + a1X +
a2X

2 + · · ·+ an−1X
n−1 + Xnf(X) is prime.

Now since every element of the form 1 + a1X + a2X
2 + · · · + an−1X

n−1 +
Xnf(X) is a product of irreducible elements of the same form and hence is
a product of prime elements, it follows that every prime ideal of P different
from A1X + A2X

2 + · · · + An−1X
n−1 + XnB[X] contains a principal prime

and hence is actually principal.

(iv) (similarly v). From (ii) a general element of Tn can be written as aXr(1+
a1X+a2X

2+ · · ·+an−1X
n−1+Xnf(X)), where a ∈ B (with a ∈ A0 if r = 0)

and 1 + a1X + a2X
2 + · · ·+ an−1X

n−1 +Xnf(X) is a product of primes.

Now, We give some basic information related to ideals.

(i) If A be a field, then XB[X] be an maximal ideal in T .

(ii) If A be an integral domain, then XB[X] be an prime ideal in T .

(iii) T/(X) ∼= A.

(iv) T/B ∼= {0}.
(v) Let A ⊂ B be fields in T . T/(aX) be a field for any a ∈ B.

(vi) Let A ⊂ B be fields in T . T/(a(1 + Xf(X))) be a field for any a ∈
A, f ∈ B[X] such that 1 + Xf(X) ∈ IrrB[X].

(i) Let A be a field. The proof follows from T/XB[X] ∼= A. We have
XB[X] is a maximal ideal in T .

(ii) – (iv) Obvious.

Corollary 2.7. 

Proof. 

A Polynomial Composites and Monoid Domains as Algebraic Structures and their Applications
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(v), (vi) From Theorem 2.9 in [2] aX for any a ∈ B is an irreducible
element. We get T/(aX) be a field. We also have a(1 + Xf(X)) for any
a ∈ A, f ∈ B[X] such that 1 + Xf(X) ∈ IrrB[X] is a irreducible element.
We have T/(a(1 + Xf(X))) be a field.

(i) If A0 +A1X + · · ·+An−1X
n−1 be a field (where A0 ⊂

A1 ⊂ A2 ⊂ · · · ⊂ An−1 ⊂ B), then XnB[X] be an maximal ideal in Tn.

(ii) If A0 +A1X + · · ·+An−1X
n−1 be a domain, then XnB[X] be an prime

ideal in Tn.

(iii) Tn/(X) ∼= A0.

(iv) Tn/B ∼= {0}.

(v) Let A0 ⊂ A1 ⊂ · · · ⊂ B be fields in Tn. Tn/(aX) be a field for any
a ∈ B.

(vi) Let A0 ⊂ A1 ⊂ · · · ⊂ B be fields in Tn. Tn/(a(1 + a1X + a2X
2 +

· · · + an−1X
n−1 + Xnf(X))) be a field for any a ∈ B, ai ∈ Ai(i =

1, 2, . . . , n− 1), f ∈ B[X] such that 1 + Xf(X) ∈ IrrB[X].

The proof is similarly to proof of Corollary 2.7.

Consider T = A + XB[X], where A be a subfield of B;
Tn = A0 + A1X + A2X

2 · · ·+ An−1X
n−1 + XnB[X], where A0 ⊂ A1 ⊂ A2 ⊂

· · · ⊂ An−1 ⊂ B be fields. Then

(i) f ∈ IrrT if and only if f ∈ IrrB[X], f(0) ∈ A.

(ii) f ∈ IrrTn if and only if f ∈ IrrB[X], ai ∈ Ai, where f = a0 + a1X +
. . . an−1X

n−1 + anX
n + · · · + amX

m with ai ∈ Ai for i = 0, 1, . . . n− 1
and an, an+1, . . . , am ∈ B(n < m).

(i). Suppose that f /∈ IrrB[X] or f(0) /∈ A. If f(0) /∈ A, then f /∈ T ,
so f /∈ IrrB[X]. Now, assume that f /∈ IrrB[X]. Then f = gh, where
g, h ∈ B[x] \B. Let g = a0 + a1X + · · ·+ anXn, h = b0 + b1X + · · ·+ bmX

m.
We have f = (a0 + a1X + · · · + anXn)(b0 + b1X + · · · + bmX

m). Then

f =
(
1 +

a1
a0

X + · · · + an
a0

Xn
)
(a0b0 + a0b1X + · · · + a0bmX

m), where a0b0 =

f(0) ∈ A. Now, suppose that f /∈ IrrT . If f /∈ T , then f(0) /∈ A. Now,
assume that f ∈ T . Then we have f = gh, where g, h ∈ T \ A. This implies
g, h ∈ B[x] \B.

(ii) Occur in the same way as in (i).

In [8], Lemma 6.4 we have informations about irreducible element in
monoid domain D[S], where D be a domain, and S be a submonoid of Q+ .
I present a generalized Proposition.

Corollary 2.8. 

Proof. 

Theorem 2.9. 

Proof. 
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Let B be an integral domain with quotient field K and
M a monoid with quotient group G 6= M . Assume that B contains prime el-
ements p1, p2, . . . , pr−1. Assume that M is integrally closed and each nonzero
element of G is type (0, 0, . . . ) (G satisfies the ascending chain condition on
cyclic subgroups). Consider m1,m2, . . . ,mr ∈ M such that m1 ∈ IrrM and
m2,m3, . . . ,mr /∈ m1 + M . Then pr−1X

mr − · · · − p2X
m3 − p1X

m2 −Xm1 ∈
IrrB[M ].

Let ≤ be a total order on G. We may assume that mr < mr−1 <
. . .m2 < m1. Suppose that pr−1X

mr − · · · − p2X
m3 − p1X

m2 − Xm1 =
fg with f, g ∈ B[M ]. Write f = a1X

t1 + . . . amX
tm and g = b1X

k1 +
· · · + bnX

kn in canonical form, where t1 < · · · < tm and k1 < · · · < kn.
First assume that either f or g is a monomial, say f = aX t.Then a ∈
B∗,m1 = t + kn,m2 = t + k1,m3 = t + k2, . . . ,mr = t + kr−1. Since
m1 ∈ IrrM , either t or kn is invertible in M . If kn is invertible, then
m2 = t + k1 = (m1 − kn) + k1 ∈ m1 + M,m3 = t + k2 = (m1 − kn) + k2 ∈
m1 + M, . . . ,mr ∈ m1 + M , a contradiction. Thus t is invertible in M ,
and hence f is a unit in B[M ]. Thus we may assume that f and g are not
monomials. Now consider the reduction of pr−1X

mr−· · ·−p2X
m3−p1X

m2−
Xm1 = fg modulo the ideal (p1, p2, . . . , pr−1). Then (−1+(p1, p2, . . . , pr−1) =
((am + (p1, p2, . . . , pr−1))X

tm)((bn + (p1, p2, . . . , pr−1))X
kn). This means that

a1 + (p1, p2, . . . , pr−1) = b1 + (p1, p2, . . . , pr−1) = (p1, p2, . . . , pr−1). In this
case c1p1 + . . . cr−1pr − 1 = a1b1 ∈ (p1, . . . , pr−1)

2, a contradiction. Thus
pr−1X

mr − · · · − p2X
m3 − p1X

m2 −Xm1 ∈ IrrB[M ].

B[M ]/(pr−1X
mr − · · · − p1X

m2 −Xm1) be a field, where
B be a domain, p1, p2, . . . , pmr ∈ B,m1,m2, . . . ,mr ∈ M with m1 ∈ IrrM ,
m2,m3, . . . ,mr /∈ m1 + M .

It follows from Proposition 2.10.

Recall that Noetherian rings satisfy the ACCP condition. Almost every
mathematician has encountered such rings. For example, Z is a Noetherian
ring. Below are the results of ACCP properties in polynomial composites
and monoid domains.

Let A be an integral domain, B be a field such that
A ⊂ B. Let R be a ring with A[X] ⊆ R ⊆ B[X]. Then R has ACCP if
and only if R ∩ B has ACCP and for each ascending chain of polynomials

f1R ⊆ f2R ⊆ f3R ⊆ . . . where fi ∈ R all have the same degree, then there is
d ∈ (R ∩B) \ {0} such that dfi ∈ (R ∩B)[X].

[11], Proposition 2.1.

Proposition 2.13 shows that between A[X] and A + XB[X] we can find
a structure which satysfying ACCP condition.

Proposition 2.10. 

Proof. 

Proposition 2.11. 

Proof. 

Proposition 2.12. 

Proof. 
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Let A be an integral domain, B be a field such that
A ⊂ B. Let C be a domain such that A[X] ⊆ C ⊆ A + XB[X]. Suppose
that for each n ∈ N0, there exists an ∈ A \ {0} for all f ∈ C with deg f ≤ n.
Then C has ACCP if and only if A has ACCP.

[11], Proposition 2.2.

The above Proposition is not obvious for arbitrary composition. This
would be a valuable remark, as it would allow we to choose the smallest
possible composite.

For subdomains A0, A1, . . . , An−1 of a field B, is the Proposition
2.13 valid for such domain C satysfying A0[X] ⊆ C ⊆ A0 + A1X + · · · +
An−1X

n−1 +XnB[X], where the condition A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ B holds
or not?

Kim in [8] proved very serious fact about ACCP monoid domain.

Let A be a domain. Then A has ACCP if and only if A[X]
has ACCP.

[8], Corollary 2.2. Can be easily proved by comparing degrees.

It also turn out that ACCP property moves between A and A + XB[X].
This is important because we do not have to choose a general polynomial,
and we can limit the inclusion to the smallest composite needed. Such a
significant limitation of a polynomial to a composite is important, e.g. in
Galois theory in commutative rings.

Let A be an integral domain, B be a field such that A ⊂ B.
An A has ACCP if and only if A + XB[X] has ACCP.

Proof. From Proposition 2.13 we have A[X] ⊆ A + XB[X] ⊆ A + XK[X],
where K be a qoutient field of B. We can to prove that for each n ≥ 0, there
exists an ∈ A \ {0} for all f ∈ A + XB[X] with deg f ≤ n. Because A has
ACCP then from Proposition 2.13 we get A+XB[X] has ACCP. Conversly,
because A + XB[X] has ACCP then A has ACCP.

The next facts are the conclusions of Theorem 2.15.

Let A0, A1, . . . , An−1 be subdomains of a field B such that
A0 ⊂ A1 ⊂ · · · ⊂ B. Let C be a domain with A0[X] ⊆ C ⊆ A0 +A1X + · · ·+
An−1X

n−1+XnB[X]. Suppose that for each n ≥ 0, there exists an ∈ A0\{0}
for all f ∈ C with deg f ≤ n. Then C has ACCP if and only if A0 has ACCP.

Let A0, A1, . . . , An−1 be subdomains of a field B such that
A0 ⊂ A1 ⊂ · · · ⊂ B. An A0 has ACCP if and only if A0 + A1X + · · · +
An−1X

n−1 + XnB[X] has ACCP.

Next Lemmas coming from Kim [8] are results about ACCP properties
in monoid domains.

Proposition 2.13. 

Proof. 

Question: 

Lemma 2.14. 

Proof. 

Theorem 2.15.

Corollary 2.16. 

Corollary 2.17. 
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Let S ⊆ T be an extension of torsion-free cancellative monoids.
If T satisfies ACCP and T ∗ ∩ S = S∗, then S satisfies the ACCP.

[8] Proposition 1.2. (1).

Let D be an integral domain, S a torsion-free cancellative
additive monoid, and D[S] the monoid domain. If D[S] satisfies ACCP,
then D and S satisfy ACCP.

[8], Proposition 1.5.

Next Theorem is the answer about question from Kim [8] Question 1.6.
In [8] Proposition 1.5 (1) we have an implication. Kim asked that are the
sufficient conditions in [8] Proposition 1.5 (1) for the monoid domain to
satisfy ACCP, necessary.

Let A be an integral domain and B be a field such that
A ⊂ B and A[S]∗ = B[S]∗. Let S be a torsion-free cancellative monoid.
Both A and B[S] satisfy ACCP if and only if A[S] satisfies ACCP.

(⇒) The proof is similar to [8], Proposition 1.5.

(⇐) From Lemma 2.19, since A[S] has ACCP, then A has ACCP. Now,
consider f1, f2, · · · ∈ B[S] such that . . . , f3 | f2, f2 | f1. Without loss of
generality, we can assume that f1, f2, · · · ∈ IrrB[S] because every ACCP-
domain is atomic. Since A∗ = B∗, so f1, f2, · · · ∈ IrrA[S]. By assumption
A[S] has ACCP, so there exists n > 1 such that fn | fn−1, . . . , f3 | f2, f2 | f1.
We get (f1) ⊆ (f2) ⊆ · · · ⊆ (fn) = (fn+1) = . . . in B[S] which is stationary.

Recall that each ACCP-domain is atomic. Hence, all previous results
about the ACCP-domains hold for the atomic domains. We complete the
knowledge about the atomicity condition in monoid domains.

Let D be an integral domain, S a torsion-free cancellative
monoid, and D[S] the monoid domain. If D[S] be atomic, then D and S be
atomic.

[8], Proposition 1.4.

Next Theorem is similarly to 2.20.

Let A be an integral domain and B be a field such that
A ⊂ B with A[S]∗ = B[S]∗. Let S be a torsion-free cancellative monoid.
Both A and B[S] be atomic if and only if A[S] be atomic.

(⇒) Since B[S] be atomic, then consider f = g1g2 . . . gn ∈ B[S], where
g1, g2, . . . , gn ∈ IrrB[S]. Hence from assumption we have g1, g2, . . . , gn ∈
IrrA[S]. Then A[S] is atomic.

(⇐) From Lemma 2.21 since A[S] be atomic, then A and S be atomic.
Now consider f = g1g2 . . . gn ∈ A[S], where g1, g2, . . . , gn ∈ IrrA[S], because
A[S] be atomic. Then g1, g2, . . . , gn ∈ IrrB[S], hence B[S] be atomic.

Lemma 2.18. 

Proof. 

Lemma 2.19. 

Proof. 

Theorem 2.20. 

Proof. 

Lemma 2.21. 

Proof. 

Theorem 2.22. 

Proof. 
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Anderson, Anderson and Zafrullah asked in [1] (Question 1) is R[X]
atomic when R is atomic. I say no. I have no example but we can deduce
from well known facts:

Suppose that R[X] is not atomic. We want to get R is not atomic. Since
R[X] is not atomic then R[X] has no ACCP. Hence R has no ACCP which
it does not imply R is not atomic because there exists an example atomic
domain which is not ACCP.

Converse, if R is not atomic, then R has no ACCP. Hence R[X] has no ACCP
which it does not imply R[X] is atomic.

In [13] we have another results about polynomial composites. Various
properties have been investigated: BFD (bounded factorization domain),
HFD (half factorial domain), idf (each nonzero element of domain has at most
a finite number of nonassociate irreducible divisors), FFD (finite factorization
domain), S-domain (for each height-one prime ideal P of domain, height of
P [X] is equal to 1 in polynomial ring over domain), Hilbert ring (every prime
ideal of domain is an intersection of maximal ideals of that domain).

Theorem 2.23 says that, under some assumption, a polynomial composite
has the structure of Dedekind rings. Dedekind rings are a very important
class of rings in algebra. There are a lot of work, the results associated with
it. On the basis of the Dedekind structure, I developed cryptosystems with
the Dedekind structure in Sections 6 and 7.

Let K ⊂ L be a finite fields extension. Then K + XL[X]
be a Dedekind domain.

By [2], Theorem 2.7 every nonzero prime ideal is a maximal. By [13]
Proposition 3.1 we have K + XL[X] is integrally closed. By Theorem 3.2
[14] K + XL[X] is noetherian domain. Hence K + XL[X] be a Dedekind
domain.

In the following Proposition, we provide the most important and funda-
mental facts about the structure of Dedekind.

Let K ⊂ L be an extension fields and let T = K+XL[X].

(a) If P be a nonzero prime ideal of T and P ′ = {x ∈ T0;xP ⊂ T}, then
PP ′ = T .

(b) Every nonzero ideal of T has an unambiguous representation in the
form product of prime ideals.

(c) Every nonzero ideal of T is invertible.

(d) If I is an ideal of T , then T/I is a principal ideal domain.

(e) Cl(T ) (a group of class of invertible ideals) be isomorphic to Pic(T ) (a
group of class of invertible modules).

Theorem 2.23. 

Proof. 

Proposition 2.24. 
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(f) If M be a finite generated torsion-free T -module, then M ∼= I1 ⊕ I2 ⊕
· · · ⊕ Ik, where I1, I2, . . . , Ik are nonzero ideals of T and k is a rang
of M . Moreover

M ∼= T k−1 ⊕ I1I2 . . . Ik.

(g) If M be a finite generated T -module, then

M ∼= T k−1 ⊕ I ⊕
⊕
(Pi,ni)

T/P ni
i ,

where k = dimT0(M ⊗T T0), I ⊂ T , I is unambiguously, with the accu-
racy to isomorphism, a designated ideal, Pi are nonzero prime ideals of
T , ni > 0, and a finite set of pair (Pi, ni) is designated unambiguously.

Let K ⊂ L be a fields extension. Let’s build a polynomial composites
K + XL[X]. In this section, we will answer the question of whether there
are relationships between field extensions and polynomial composites.

All my considerations began with the Theorem 3.1 below. This Propo-
sition motivated me to further consider polynomial composites K + XL[X]
in a situation where the extension of fields K ⊂ L is algebraic, separable,
normal and Galois, respectively.

Let K ⊂ L be a field extension. Put T = K +XL[X]. Then
T is Noetherian if and only if [L : K] <∞.

(⇒) Since XL[X] is a finitely generated ideal of K+XL[X], it follows
from [14] Lemma 3.1 that [L : K] <∞. Thus, L[X] is module-finite over the
Noetherian ring K + XL[X].

(⇐) L[X] is Noetherian ring and module-finite over the subring K +
XL[X]. This is the situation covered by P.M. Eakin’s Theorem [6].

Every Propositions and Theorems of this section we can find in [14].

Let K ⊂ L be a fields extension such that LG(L|K) = K.
Put T = K + XL[X]. T is Noetherian if and only if K ⊂ L be an algebraic
extension.

Let K ⊂ L be fields extension such that K be a perfect
field and assume that any K-isomorphism ϕ : M → M , where ϕ(L) = L
holds for every field M such that L ⊂ M . Put T = K + XL[X]. T be a
Noetherian if and only if K ⊂ L be a separable extension.

Let K ⊂ L be fields extension. Assume that if a map
ϕ : L → a(K) is K-embedding, then ϕ(L) = L. Put T = K + XL[X]. T be
a Noetherian if and only if K ⊂ L be a normal extension.

III. Relationships between Polynomial Composites
and Certain types of Fields Extensions

Theorem 3.1. 

Proof. 

Proposition 3.2. 

Proposition 3.3. 

Proposition 3.4. 
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Let K ⊂ L be fields extension such that LG(L|K) = K.
Put T = K + XL[X]. T be a Noetherian if and only if K ⊂ L be a normal
extension.

Let T = K + XL[X] be Noetherian, where K ⊂ L be
fields. Assume |G(L | K)| = [L : K] and any K-isomorphism ϕ : M → M ,
where ϕ(L) = L holds for every field M such that L ⊂M . T be a Noetherian
if and only if K ⊂ L be a Galois extension.

Let T = K + XL[X], where K ⊂ L be fields such that
K = LG(L|K). T be a Noetherian if and only if K ⊂ L be a Galois extension.

Let K ⊂ L ⊂M be fields such that K be a perfect field. If
K + XL[X] and L + XM [X] be Noetherian then K ⊂M be separable fields
extension.

Moreover, if we assume that any K-isomorphism ϕ : M ′ → M ′, where
ϕ(M) = M holds for every field M ′ such that M ⊂ M ′, then K + XM [X]
be a Noetherian.

Let K ⊂ L ⊂ M be fields such that MG(M |K) = K.
If K + XM [X] be Noetherian then L ⊂ M be a normal fields extension.
Moreover, L + XM [X] be Noetherian.

Let K ⊂ L be extension fields such that [L : K] = 2.
Then K + XL[X] be Noetherian. Moreover, if LG(L|K) = K, then K ⊂ L be
a normal.

([9], Theorem 1.2.). Let M be an algebraically closed field
algebraic over K, and let L such that K ⊆ L ⊆ M be an intermediate field.
Then the following are equivalent:

(a) L is separable over K.

(b) M ⊗K L has no nonzero nilpotent elements.

(c) Every element of M ⊗K L is a unit times an idempotent.

(d) As an M-algebra M ⊗K L is generated by idempotents.

([9], Theorem 1.3.). Let M be an algebraically closed field
containing K, and let L be a field algebraic over K. Then the following are
equivalent:

(a) L is separable over K.

(b) M ⊗K L has no nonzero nilpotent elements.

(c) Every element of M ⊗K L is a unit times an idempotent.

(d) As an M-algebra M ⊗K L is generated by idempotents.

Below we have conclusions from the above results.

In Theorems 3.11 and 3.12 if assume LG(L|K) = K, then
conditions (a) – (d) are equivalent to

Proposition 3.5. 

Proposition 3.6. 

Proposition 3.7. 

Proposition 3.8. 

Proposition 3.9. 

Proposition 3.10. 

Theorem 3.11 

Theorem 3.12 

Theorem 3.13. 
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(e) K + XL[X] be a Noetherian.

(f) [L : K] <∞

(g) K ⊂ L be an algebraic extension.

(h) K ⊂ L be a Galois extension.

(h)⇒(a) – Obvious.

(a)⇒(g)⇒(e)⇒(h) If K ⊂ L be a separable extension, then be an al-
gebraic extension. By Proposition 3.2 K + XL[X] be a Noetherian. By
Proposition 3.7 K ⊂ L be a Galois extension.

(e)⇒(f) – Theorem 3.1.

In Theorem 3.13 if assume K be a perfect field and LG(L|K) =
K, then conditions (a) – (h) are equivalent to
(g) K ⊂ L be a normal extension.

(g)⇒(a) If K ⊂ L be a normal extension, then be an algebraic exten-
sion. By definition perfect field K ⊂ L be a separable extension.

(h)⇒(g) Obvious.

Proposition 3.7, Theorems 3.13 and 3.14 can be used to solve the inverse
Galois problem. The inverse Galois problem concerns whether or not every
finite group appears as the Galois group of some Galois extension of the
rational numbers Q. This problem, first posed in the early 19th century, is
unsolved.

There is a lot of work. And it is enough to solve the problem for non-
abelian groups. Thus, the following question arises:

Can all the statements of this sections operate in noncommutative structures?

And another question also arises regarding polynomial composites:

Under certain assumptions for any type of K ⊂ L, we get that K+XL[X] be
a Noetherian ring. When can K + XL[X] be isomorphic to any Noetherian
ring?

In [12] we have an information about how can we make a finite alphabet
to an infinite alphabet?

We can assign an appropriate number to each letter of the alphabet:
A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6, H = 7, I = 8, J = 9, K =
10, L = 11,M = 12, N = 13, O = 14, P = 15, Q = 16, R = 17, S = 18, T =
19, U = 20, V = 21,W = 22, X = 23, Y = 24, Z = 25. So the alphabet
is a finite set. The opposite side can easily decipher using the length of

Proof. 

Theorem 3.14. 

Proof. 

Question:

Question:

IV. Generalized RSA Cipher
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the alphabet. What if we extend this alphabet to an infinite set? In this
situation, we can stay with the alphabet, but extend the length to infinity.
So we have A = 0+26k0, B = 1+26k1, C = 2+26k2, . . . , Y = 24+26k24, Z =
25 + 26k25, where k0, k1, . . . , k25 ∈ N0. So, for example, the text ABACAB
can be converted to 0 1 0 2 0 1, but also to 0 1 26 54 26 53.
And we can give this number sequence to encrypt.

Let’s choose distinct prime ideals P = (p) and Q = (q) (p, q are distinct
primes) such that N = PQ such that |N | < |(x)|, where x is the length of
the alphabet.

Compute Φ(N) = (ϕ(n)) := (P − 1)(Q− 1) = (p− 1)(q − 1).

Let’s choose the ideal E = (e) such that e and ϕ(n) are relatively primes
(gcd(e, ϕ(n) = 1)) and |Φ(N)| < |E| ( (1) = N0.

We find the ideal D = (d) such that ED ≡ 1(mod Φ(N)).

The public key is defined as the pair of ideals (N,E), while the private
key is the pair (N,D).

We encrypt the message M = M0M1 . . .Mr by calculation

Ci ≡MiE(mod Φ(N))

The encrypted message C = C0C1 . . . Cr is decrypted by formula

M1 ≡ CiD(mod Φ(N)).

From [12] recall a generalized Diffie-Hellman key exchange.

First person F and second person S agree on the prime ideals (p) and (g)
in N0 such that |(p)| < |(g)|.

Person F chooses any secret (a) in N0 and sends to person S

(A) ≡ (g)(a)(mod (p)).

Person S chooses any secret (b) in N0 and sends to person F

(B) ≡ (g)(b)(mod (p)).

Person F compute (s) ≡ (B)(a)(mod (p)).

Person S compute (s) ≡ (A)(b)(mod (p)).

Person F and person S share a secret ideal (s). This is because

(s) ≡ (g)(a)(b) ≡ (g)(b)(a)(mod (p)).

a) Generating keys

b) Encryption and decryption

V. Generalized Diffie - Hellman Key Exchange
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In section 6 and 7 we have cryptosystems that use the Dedekind structure
([15] in cooperation with M. Jankowska). My goal was not to create an entire
cryptosystem based on the Dedekind structure. The first cryptosystem has
a Dedekind structure in the key. The second cryptosystem has a Dedekind
structure in two different alphabets. It is essential. This increases the security
of our data. First of all, we use the fractional ideal structure. The definition
itself is very interesting and motivated to apply.

Let A = {a0, a1, . . . , an} be an alphabet such that |A| be a prime number.
Let x ∈ {2, 3, . . . , |A|} be the value of one of the letters of the alphabet, k > 2
be an key. Then

y = xk (mod |A|),

where y be the value of one of the letters of the alphabet be an encrypted
letter.

Now, assume we have encrypted letter y. Then we get a decrypted letter
x by a formula

x = (y + (k − d) · |A|) · k−1,

where d be the remainder of dividing y by k.

x =
y + (k − y (mod k))|A|

k
=

=
xk (mod |A|) + ((k − (xk (mod |A|))) (mod k))|A|

k
= x

As proposed in [12] (Introduction of section 3), this cipher can be gener-
alized to a complete algebraic structure. It is enough to adopt the infinite
alphabet as in [12], x be transformed into the principal ideal (x), k be trans-
formed into the principal ideal (k), y into the principal ideal (y). This way
we get algebraic encryption where the key (k) be the fractional ideal in the
Dedekind’s ring, in this case Z.

Let A be a set of characters. Assume |A| is equal to any prime number.

Secretly establish a second alphabet A′ such that A′ ⊂ A with a prime
length.

Let m1m2m3 . . .mn be a message, we want to encrypt.

A secret short alphabet A′ divides a large public alphabet into zones. We
skip the extra characters such that 0, 1. So we have a clean alphabet from
2. Let’s move one over, so we have 1. Suppose p = |A|, q = |A′|. We have

VI. A Key that is a Fractional Ideal

VII. The Alphabet as a Fractional Ideal

Proof. 
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⌈p
q

⌉
zones. Zero zone, includes the alphabet from 1 to q. The first zone, i.e.

the alphabet from q + 1 to 2q and so on. The last zone (
⌈p
q

⌉
− 1) includes

the alphabet from
⌈p
q

⌉
q to p.

Let’s extend the message values with random numbers informing us about
a given zone of a given letter (this information denote by zi):

z1m1z2m2 . . . znmn

Denote by k the key. Multiply each value of the message (not the infor-
mation about the zone) by k and use the modulo q.

Hence ciphertext is:

z1d1z2d2 . . . zndn,

where d1d2 . . . dn be a encrypted message.

Now let’s decode the message.

z1d1z2d3 . . . zndn

by dividing it into blocks (each block contains a zone and a message).

Let’s apply the formula:

mi =
di + (zi + ti · k)|A|

k
,

where mi is the decoded letter, di encrypted letter, z is a number satisfies a
congruence |A|−1zi ≡ di (mod k), k be the key, t be a zone.

Of course, this cryptosystem can also be easily generalized by turning
individual elements into ideals.

Finally, we will show cryptosystems based on polynomial composites and
monoid domains.

Let f = a0 + a1X + · · · + an−1X
n−1 +

m∑
j=n

ajX
j, g = b0 +

b1X + · · ·+ bn−1X
n−1 +

m∑
j=n

bjX
j, where ai, bi ∈ Ai for i = 0, 1, . . . , n− 1 and

aj, bj ∈ B for j = n, n + 1, . . . ,m. Then

fg ∈ A0 + XB[X].

VIII. Applications of Polynomial Composites in Cryptology

Lemma 8.1.
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we have f and g are composition of encryption systems. No consider B.
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To improve security, let’s fix that deg f = n − 1, deg g = n − k, where
k ∈ {2, . . . , n− 1}. And such f , g Alice and Bob agree before the message is
sent.

Alice and Bob multiply these composites to form one. We have
fg = (A0 + A1X + . . . AkX

k)(B0 + B1X + · · · + BlX
l) = A0B0 + (A0B1 +

A1B0)X + · · ·+ AkBlX
k+l.

Note that the sum and product of the encryption systems must be defined
in the formula above. Definitions we leave Alice and Bob. But in this section
we can put SiSj : x→ (x)Si

(x)Sj
and Si + Sj : x→ ((x)Si

)Sj
. We can define

the product and the sum of cryptosystems completely differently.

So in the product we encrypt the letter as two letters, the first in the first
system and the second in the second system. And in the sum we encrypt the
letter using the first system and then the second system. Of course, we can
define completely different, at our discretion.

Assume that degree of fg is m and text to encrypt consists of more letters
then m + 1. Then we divide the text into blocks of length m + 1. We can
assume that fg(0) encrypts the first letter of each block. Expression at X
of fg encrypts the second letter of each block, and expression at X2 of fg
encrypts the third letter and so on.

Now, let’s see how to decrypt in this idea.

Assume that we have an encrypted message M0M1 . . .Mn. If our key is
degree m, then we divide message on m + 1 partition. And every partion
divide to two. Every two letters are one letter of message.

Earlier we define SiSj : x → (x)Si
(x)Sj

and Si + Sj : x → ((x)Si
)Sj

.
Then decryption of two letters MlMl+1 (l = 0, 2, 4, . . . ) are MlMl+1 =
(Ml)Si

(Ml+1)Sj
= Nl,l+1 (one letter) and Ml = ((Ml)Si

)Sj
= (Nl)ij (one

letter).

The use of many cryptosystems in various configurations in a polynomial
composite increases our security. The security here lies in the fact that the
encrypted message is resistant to breaking under many cryptanalyst criteria.

It is very easy to decrypt the message when you know the key.

Any alphabet of characters creates a finite set. Most ciphers are based
on finite sets. But we can have the idea of using the infinite alphabet A,
although in reality they can be cyclical sets with an index that would mean
a given cycle. For example, A0 - 0, B0 - 1, . . . , Z0 - 25, A1 - 0, B1 - 1, . . . ,
where Ai=A, . . . , Zi=Z for i = 0, 1, . . . . We see that this is isomorphic to a
monoid N0 non-negative integers by a formula

f : A→ N, f(mi) = i.

IX. Applications of Monoid Domains in Cryptology
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Then we can use a monoid domain by a map

ϕ : A→ F [A], ϕ(m0,m1, . . . ,mn) = a0X
m0 + . . . anX

mn .

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We want to encrypt the message m0m1m2 . . .mn (the letters transform
to numbers by a function ϕ). We establish the secret key X. Let F be a
field. We determine any coefficients from this field: a0, a1, . . . , an. Then the
message m0m1m2 . . .mn be transformed into a polynomial of the form:

a0X
m0 + a1X

m1 + · · ·+ anX
mn .

We compute for i = 0, 1, . . . , n: di = aiX
mi (mod |A|) (|A| must be prime)

and then we have a decrypt message d0d1 . . . dn.

To decrypt it we need to use a formula (for i = 0, 1, . . . , n):

mi = logX

di
ai

(mod |A|).

logX

aiX
mi

ai
= mi (mod |A|).

Proof. 
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