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Abstract

In this paper I consider ACCP and atomic properties for com-
posites and monoid domains with different configurations of sets (do-
mains, fields). The paper provides possible characterization of com-
posites and monoid domains with respect to ACCP and atomic prop-
erties. Also I consider examples of primary ideals in composites.

1 Introduction

By the ring we mean a commutative ring with unity. Let R be a ring.
We denote by R∗ the group of all invertible elements of R. The set of all
irreducible elements of R will be denoted by IrrR.

The main motivation of this paper is description of some algebraic objects
in the language of commutative algebra. This paper begins as a second (first
[19]) a series of results closely related to commutative algebra.

D.D. Anderson, D.F. Anderson, M. Zafrullah in [12] called object A +
XB[X] as a composite for A ⊂ B fields. If B be a domain and M be
an additive cancellative monoid we can define a monoid domain B[M ] =
{a0Xm0 + · · · + anX

mn : a0, . . . , an ∈ B,m1, . . .mn ∈ M}. Monoid domains
appear in many works such that [15], [16].

Keywords: domain, field, irreducible element, polynomial.
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There are many works where composites are used as examples to show
some properties. But the most important works are presented below.

In 1976 [3] authors considered the structures in the form D + M , where
D be a domain and M be a maximal ideal of ring R with D ⊂ R. Later
(1.3), we could prove that in composite in the form D + XK[X], where D
be a domain, K be a field with D ⊂ K, that XK[X] be a maximal ideal of
K[X]. Next, Costa, Mott and Zafrullah ([4], 1978) considered composites in
the form D + XDS[X], where D be a domain and DS be a localization of
D relative to the multiplicative subset S. In 1988 [8] Anderson and Ryck-
aert studied classes groups D + M . Zafrullah in [9] continued research on
structure D+XDS[X] but he showed that if D be a GCD-domain, then the
behaviour of D(S) = {a0 +

∑
aiX

i | a0 ∈ D, ai ∈ DS} = D + XDS[X] de-
pends upon the relationship between S and the prime ideals P of D such that
DP be a valuation domain (Theorem 1, [9]). Fontana and Kabbaj in 1990
([11]) studied the Krull and valuative dimensions of composite D+XDS[X].
In 1991 there was an article ([12]) that collected all previous results about
composites and authors began to create a further theory about composites
creating results. In this paper, the considered structures were officially called
composites. After this article, various minor results appeared. But the most
important thing is that composites have been used in many theories as exam-
ples. That is why I decided to examine all possible properties of composites
for commutative algebra. The first results are in [19] and the next ones are
in this paper.

In [19] I examined many properties. I will list the most important of them
that may be related to this article.

Proposition 1.1. Let f = a0+a1X+. . . an−1X
n−1+anX

n+· · ·+amXm ∈ Tn
(Tn = A0+A1X+· · ·+An1X

n−1+XnB[X], A0, A1, . . . , An−1 are subdomains
of a field B), where 0 ≤ n ≤ m and ai ∈ Ai for i = 0, 1, . . . , n and aj ∈ B
for j = n, n+ 1, . . . ,m.

(i) f ∈ T ∗
n if and only if a0 ∈ A∗

0 and a1, a2, . . . , am are nilpotents.

(ii) f is a nilpotent if and only if a0, a1, . . . , am are nilpotents.

Proof. [19] Proposition 2.6.

Proposition 1.2. Let B be a domain and f = am1X
m1 + am2X

m2 + · · · +
amnX

mn ∈ B[M ], where m1,m2, . . . ,mn ∈M and am1 , am2 , . . . , amn ∈ B.

(i) f ∈ B[M ]∗ if and only if there exist mi ∈ M and ami
∈ B∗ such that

mi = 0 and for every k 6= m we have ak be nilpotents.
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(ii) f be a nilpotent if and only if am1 , am2 , . . . , amn are nilpotents.

Proof. [19] Proposition 2.8.

Theorem 1.3. Consider T = A + XB[X], where A be a subfield of B;
Tn = A0 +A1X +A2X

2 · · ·+An−1X
n−1 +XnB[X], where A0 ⊂ A1 ⊂ A2 ⊂

· · · ⊂ An−1 ⊂ B be fields. Then

(i) every nonzero prime ideal of T (Tn, respectively) is maximal;

(ii) every prime ideal P different from XB[X] (in T ) is principal;

(iii) every prime ideal P different from A1X + A2X
2 + · · · + An−1X

n−1 +
XnB[X] (in Tn) is principal;

(iv) T is atomic, i. e., every nonzero nonunit of T is a finite product of
irreducible elements (atoms);

(v) Tn is atomic.

Proof. [19] Theorem 2.10.

Since we are considering the properties of ACCP and atomicity, it is worth
looking at the properties of GCD (greatest common divisor) and pre-Schreier.

Recall any unique factorization domain (UFD) be a GCD-domain, and
any GCD-domain be a pre-Schreier domain. But if assume atomic and pre-
Schreier, then we have UFD.

Example 1.4. T, Tn (See Theorem 1.3) are no GCD-domains. Let f =
a1 + b1X, g = a2 + b2X, where a1, a2 ∈ A, b1, b2 ∈ B with A+XB[X]. Then

gcd(f, g) =
a1b2 − a2b1

b2
. We see that gcd(f, g) ∈ B \ A.

More information about GCD-domains we can see in, e.g. [6], [13], [14].
Recall that a domain R be a pre-Schreier domain if every element a ∈ R

is a primal, i.e. for every elements b, c ∈ H if a | bc then there exist a1, a2 ∈ R
such that a1 | b, a2 | c, a = a1a2.

More information about Schreier and pre-Schreier domains we can see in
many works, e.g. in [5], [13], [14], [7], respectively.

Lemma 1.5. If A ⊂ B be fields, then A+XB[X] be a pre-Schreier domain.
If A0 ⊂ A1 ⊂ . . . An−1 ⊂ B be fields, then A0 + A1X + · · · + An−1X

n−1 +
XnB[X] be also a pre-Schreier domain.

Proof. [19] Lemma 2.13.
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In the first chapter I present ACCP condition in composites and monoid
domains. Recall, we say that a ring R satysfying ACCP condition (in short:
has ACCP) if each increasing sequence of principal ideals is stationary. In
Theorem 2.4 and Theorem 2.11 we have characterizations of composites and
monoid domains satysfying ACCP condition. Theorem 2.11 is answer to
Kim’s hypothesis in [15] Question 1.6.

In the second chapter in a monoid domains I present atomic condition in
a characterization in Theorem 3.2. Recall, we say that a ring R be atomic
if every nonzero nonunit element of R can be written as a finite product of
irreducible elements (also called atoms). If R has ACCP then R be atomic.
The example of atomic domain which is not ACCP we can see in [17].

The third chapter is devoted to primary ideals.

The structures described in this paper often appear in the form of exam-
ples in many works. The aim of this work will be to examine as much as
possible properties and applications in commutative algebra.

2 ACCP properties

In [12] Example 5.1 showed an example of an integral domain R which
satisfies ACCP, but whose integral closure does not satisfy ACCP. It mean
R = Z+XZ[X], where Z be the ring of all algebraic integers. An R satisfies
ACCP. For if not, then there is an infinite properly ascending chain of pricipal
ideals of R. Since the degrees of the polynomials generating these principal
ideals are nonincreasing, the degrees eventually stabilize. The principal ideals
in Z are generated by the leading coefficients of these polynomials gives an
infinite ascending chain a1Z ( a2Z ( ... where each an/an+1 ∈ Z. Thus all
an ∈ Q[a1]. Let A = Z ∩Q[a1]. Then a1A ( a2A ( · · · ( A, a contradiction
since A is Dedekind.

Note that for R a ring between A[X] and B[X] (A be an integral domain,
B be a field such that A ⊂ B), R has ACCP if and only if for every n > 0,
any ascending chain of principal ideals generated by polynomials of degree
n terminates. If B be a qoutient field of A, the Proposition 5.2 [12] may be
used to show that ring R satisfies ACCP. But we can minimalize assumptions
by composites.

Proposition 2.1. Let A be an integral domain, B be a field such that A ⊂ B.
Let R be a ring with A[X] ⊆ R ⊆ B[X]. Then R has ACCP if and only
if R ∩ B has ACCP and for each ascending chain of polynomials f1R ⊆
f2R ⊆ f3R ⊆ . . . where fi ∈ R all have the same degree, then there is
d ∈ (R ∩B) \ {0} such that dfi ∈ (R ∩B)[X].
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Proof. (⇒) Since (R∩B)∗ = R∗∩B, R has ACCP implies R∩B has ACCP.
The chain f1R ⊆ f2R ⊆ . . . be stationary, say fnR = fn+1R = . . . . So
fn+1 = uifi, where ui is a unit of R ∩ B. Since fn ∈ B[X], there exists
a 0 6= a ∈ A ⊆ R ∩ B with afn ∈ A[X] ⊆ R. But then coefficients of
afn+1 = uidfn all lie in R ∩B.

(⇐) Let f1R ⊆ f2R ⊆ . . . be an ascending chain in R. Since deg fi+1 6
deg fi, eventually fi have the same degree, so without loss of generality, we
can assume that deg f1 = deg f2 = . . . . By hypothesis there exists 0 6= a ∈
R ∩ B with afi ∈ (R ∩ B)[X]. Now fiR ⊆ fi+1R implies fi = fi+1b, where
b ∈ R has degree 0, so b ∈ R ∩B. Hence afi(R ∩B)[X] ⊆ afi+1(R ∩B)[X].
But R ∩B has ACCP and hence so does (R ∩B)[X]. So for large n, fn(R ∩
B)[X] = fn+1(R ∩B)[X] = . . . , and hence fnR = fn+1R = . . . .

Proposition 2.2 shows that between A[X] and A+XB[X] we can find a
structure which satysfying ACCP condition.

Proposition 2.2. Let A be an integral domain, B be a field such that A ⊂ B.
Let C be a domain such that A[X] ⊆ C ⊆ A+XB[X]. Suppose that for each
n ≥ 0, there exists an ∈ A \ {0} for all f ∈ C with deg f ≤ n. Then C has
ACCP if and only if A has ACCP.

Proof. This is a special case of Proposition 2.1. The second part of this
proof: let us call R a bounded factorization domain (BFD) if for each nonzero
nonunit a ∈ R, there exists a positive integer N(a), so that if a = a1 . . . as
where each ai is nonunit, then s 6 N(a). It is very known fact that a
BFD has ACCP but the converse is false. In the proof suppose that A
be a BFD. Let 0 6= f ∈ C have a degree n and leading coefficient b. Write
f = g1 . . . gsgs+1 . . . gm, where g1, . . . , gm ∈ C are nonunits with g1, . . . , gs ∈ A
and gs+1, . . . , gm ∈ C have a degree > 1. Now gs+1 . . . gm has a degree n, so
m − s 6 n. Also, rngs+1 . . . gm ∈ A[X], say it has leading coefficient c ∈ A.
Then rnb = gq . . . gsc. But A is a BFD, so there is a bound on the number
of factors for rnb and hence on s. Thus the m if f = g1 . . . gsgs+1 . . . gm has
an upper bound. Conversely, if C be a BFD, easy to see that A be a BFD
without any additional hypothesis on C.

The above Proposition is not obvious for arbitrary composition. This
would be a valuable remark, as it would allow we to choose the smallest
possible composite.

Question 1: For subdomains A0, A1, . . . , An−1 of a field B, is the Proposition
2.2 valid for such domain C satysfying A0[X] ⊆ C ⊆ A0 + A1X + · · · +
An−1X

n−1 +XnB[X], where the condition A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ B holds
or not?
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Kim in [15] proved very serious fact about ACCP monoid domain.

Lemma 2.3. Let A be a domain. Then A has ACCP if and only if A[X]
has ACCP.

Proof. [15], Corollary 2.2. Can be easily proved by comparing degrees.

It also turn out that ACCP property moves between A and A+XB[X].
This is important because we do not have to choose a general polynomial,
and we can limit the inclusion to the smallest composite needed. Such a
significant limitation of a polynomial to a composite is important, e.g. in
Galois theory in commutative rings.

Theorem 2.4. Let A be an integral domain, B be a field such that A ⊂ B.
An A has ACCP if and only if A+XB[X] has ACCP.

Proof. From Proposition 2.2 we have A[X] ⊆ A + XB[X] ⊆ A + XK[X],
where K be a qoutient field of B. We can to prove that for each n ≥ 0, there
exists an ∈ A \ {0} for all f ∈ A + XB[X] with deg f ≤ n. Because A has
ACCP then from Proposition 2.2 we get A + XB[X] has ACCP. Conversly,
because A+XB[X] has ACCP then A has ACCP.

The next facts are the conclusions of Theorem 2.4.

Corollary 2.5. Let A0, A1, . . . , An−1 be subdomains of a field B such that
A0 ⊂ A1 ⊂ · · · ⊂ B. Let C be a domain with A0[X] ⊆ C ⊆ A0 +A1X+ · · ·+
An−1X

n−1+XnB[X]. Suppose that for each n ≥ 0, there exists an ∈ A0\{0}
for all f ∈ C with deg f ≤ n. Then C has ACCP if and only if A0 has ACCP.

Corollary 2.6. Let A0, A1, . . . , An−1 be subdomains of a field B such that
A0 ⊂ A1 ⊂ · · · ⊂ B. An A0 has ACCP if and only if A0 + A1X + · · · +
An−1X

n−1 +XnB[X] has ACCP.

If assume A0, A1, . . . , An−1 are integral domains, B be a field such that
A0, A1, . . . , An−1 ⊂ B, then the above Corollaries do not aply because such
composite is not a ring ([19] Corollary 2.3).

Next Proposition is about A-valued B-polynomials. Recall that A-valued
B-polynomials be a structure in the form I(B,A) = {f ∈ B[X] : f(A) ⊆ A}.
Of course I(B,A) ⊂ A+XB[X], where A,B are domain such that A ⊂ B.

Proposition 2.7. Let A be an integral domain, B be a field, where A ⊂ B.
For each n > 0, there exists an ∈ A \ {0} such that anf(X) ∈ A[X] for all
f(X) ∈ I(B,A) with deg f(X) 6 n.
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Proof. For n = 0 we may take a0 = 1. Assume that an−1 ∈ A \ {0} has been
chosen such that an−1g(X) ∈ A[X] for all g(X) ∈ I(B,A) with deg g(X) 6
n − 1. If A = B, we may take an = 1. So suppose that a b0 be a nonzero
nonunit of A. Let f(X) = c0+c1X+. . . cnX

n ∈ I(B,A) have a degree n. Now
c0 + b0c1X + . . . bn0cnX

n = f(b0X) ∈ I(B,A) as is bn0f(X) = bn0c0 + bn0c1X +
. . . bn0cnX

n. Hence (bn0 − 1)c0 + (bn0 − b0)c1X + · · · + (bn0 − bn−1
0 )cn−1X

n−1 =
bn0f(X)−f(b0X) = g(X) ∈ I(B,A). By induction, an−1g(X) ∈ A[X], that is,
an−1(b

n
0 − bi0)ci ∈ A for i = 0, 1, . . . , n− 1. Put an = an−1

∏n−1
i=0 (bn0 − bi0) ∈ A.

Since b0 be a nonzero nonunit, each bn0 − bi0 6= 0, so an 6= 0. Certainly
anci ∈ R for i = 0, 1, . . . , n − 1. Now c0 + c1 + . . . cn = f(1) ∈ A, so
anc0 + · · ·+ ancn = anf(1) ∈ A, hence ancn ∈ A. So anf(X) ∈ A[X].

Corollary 2.8. Let A be an integral domain, B be a field such that A ⊂ B.
Then I(B,A) satisfies ACCP if and only if A satisfies ACCP.

Proof. Combine Proposition 2.2 and Proposition 2.7.

Next lemmas coming from Kim [15] are results about ACCP properties
in monoid domains.

Lemma 2.9. Let S ⊆ T be an extension of torsion-free cancellative monoids.
If T satisfies ACCP and T ∗ ∩ S = S∗, then S satisfies the ACCP.

Proof. [15] Proposition 1.2. (1).

Lemma 2.10. Let D be an integral domain, S a torsion-free cancellative
additive monoid, and D[S] the monoid domain. If D[S] satisfies ACCP,
then D and S satisfy ACCP.

Proof. [15], Proposition 1.5.

Next Theorem is the answer about question from Kim [15] Question 1.6.
In [15] Proposition 1.5 (1) we have an implication. Kim asked that are the
sufficient conditions in [15] Proposition 1.5 (1) for the monoid domain to
satisfy ACCP, necessary.

Theorem 2.11. Let A be an integral domain and B be a field such that
A ⊂ B and A[S]∗ = B[S]∗. Let S be a torsion-free cancellative monoid.
Both A and B[S] satisfy ACCP if and only if A[S] satisfies ACCP.

Proof. (⇒) The proof is similar to [15], Proposition 1.5.

(⇐) From Lemma 2.10, since A[S] has ACCP, then A has ACCP. Now,
consider f1, f2, · · · ∈ B[S] such that . . . , f3 | f2, f2 | f1. Without loss of
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generality, we can assume that f1, f2, · · · ∈ IrrB[S] because every ACCP-
domain is atomic. Since A∗ = B∗, so f1, f2, · · · ∈ IrrA[S]. By assumption
A[S] has ACCP, so there exists n > 1 such that fn | fn−1, . . . , f3 | f2, f2 | f1.
We get (f1) ⊆ (f2) ⊆ · · · ⊆ (fn) = (fn+1) = . . . in B[S] which is stationary.

In the below we have known fact from [17].

Lemma 2.12. Let D be an integral domain. A D satisfies ACCP if and only
if D[X] satisfies ACCP.

3 Atomic properties

In this section we have results about atomicity in a monoid domain.

Lemma 3.1. Let D be an integral domain, S a torsion-free cancellative
monoid, and D[S] the monoid domain. If D[S] be atomic, then D and S be
atomic.

Proof. [15], Proposition 1.4.

Next Theorem is similarly to 2.11.

Theorem 3.2. Let A be an integral domain and B be a field such that A ⊂ B
with A[S]∗ = B[S]∗. Let S be a torsion-free cancellative monoid. Both A and
B[S] be atomic if and only if A[S] be atomic.

Proof. (⇒) Since B[S] be atomic, then consider f = g1g2 . . . gn ∈ B[S], where
g1, g2, . . . , gn ∈ IrrB[S]. Hence from assumption we have g1, g2, . . . , gn ∈
IrrA[S]. Then A[S] is atomic.

(⇐) From Lemma 3.1 since A[S] be atomic, then A and S be atomic.
Now consider f = g1g2 . . . gn ∈ A[S], where g1, g2, . . . , gn ∈ IrrA[S], because
A[S] be atomic. Then g1, g2, . . . , gn ∈ IrrB[S], hence B[S] be atomic.

Anderson, Anderson and Zafrullah asked in [10] (Question 1) is R[X]
atomic when R is atomic. I say no. I have no example but we can deduce
from well known facts:

Suppose that R[X] is not atomic. We want to get R is not atomic. Since
R[X] is not atomic then R[X] has no ACCP. Hence R has no ACCP which
it does not imply R is not atomic because there exists an example atomic
domain which is not ACCP.

Converse, if R is not atomic, then R has no ACCP. Hence R[X] has no ACCP
which it does not imply R[X] is atomic.
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4 Primary ideals

The issue of primary ideals is a very important part, e.g. in the consider-
ation of noetherian rings, which is why I decided to study composites in this
respect. Recall that an ideal I of the ring R is called primary if I satisfies
the following implication for any a, b ∈ R:

ab ∈ I ⇒ a ∈ I ∨ bn ∈ I.

Let’s start from easy Lemma. Next show primary ideal on composites.

Lemma 4.1. Let A ⊂ B be integral domains. If A be an ideal of B. Then
A[X] be an ideal of A+XB[X].

Proposition 4.2. Let A and B be integral domains. If A be an ideal of B.
Then A[X] be an primary ideal of A+XB[X].

Proof. From lemma 4.1 we have A[X] is an ideal of A+XB[X]. The condition
”A[X] is a primary ideal of A + XB[X]” is equivalent to ”any nonzero zero
divisor of A + XB[X]/A[X] is a nilpotent. Note that A + XB[X]/A[X] ∼=
X(B\A)[X]. Let’s consider any nonzero zero divisor f ∈ X(B\A)[X]. Then
there exist a b ∈ B \ A, b 6= 0 such that bf = 0. Raising to some power n
we have bnfn = 0. If bn = 0 then b = 0, but b 6= 0. A contradiction. Hence
fn = 0. Therefore in A + XB[X]/A[X] all zero divisors are nilpotents, i.e.
A[X] is a primary ideal of A+XB[X].

Lemma 4.3. Let A0, A1, . . . , An−1 be subdomains of a field B with A0 ⊂
A1 ⊂ · · · ⊂ An−1 ⊂ B. If A0 be an ideal of A1, A1 be an ideal of A2, . . . ,
An−2 be an ideal of An−1, An−1 be an ideal of B, then A0[X] be an ideal of
A0 + A1X + · · ·+ An−1X

n−1 +XnB[X].

Proposition 4.4. Let A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ B be domains. If A0 be an
ideal of A1, A1 be an ideal of A2, . . . , An−2 be an ideal of An−1, An−1 be an
ideal of B, then A0[X] be an primary ideal of A0 +A1X + · · ·+An−1X

n−1 +
XnB[X].

Proof. From lemma 4.3 we have A0[X] is an ideal of A0 + A1X + · · · +
An−1X

n−1 +XnB[X]. Proceed similarly to 4.2.

Question: How to find primary ideals in any monoid domain?
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5 Examples

Example 5.1. At the beginning of the second chapter I gave an example an
integral domain R which satisfies ACCP, but whose integral closure does not
satisfy ACCP. It means R = Z +XZ.

Example 5.2. Recall that a domain R is called a half-factorial domain
(HFD) if R is atomic and for each nonzero nonunit x ∈ R, x = x1 . . . xm =
y1 . . . yn where xi, yj are all irreducible for i = 1, . . . ,m, j = 1, . . . , n, implies
that m = n. A HFD domain satisfies ACCP.

Example 5.3. Let R = R + XC[X]. So R is a HFD, so has ACCP, then
atomic.

Example 5.4. ([2]) Let F be a field and T the additive submonoid of Q+

generated by {1/3, 1/(2 · 5), . . . , 1/(2jpj), . . . }, where p0 = 3, p1 = 5, . . . is
the sequence of odd primes. Let R be the monoid domain F [X;T ] = F [T ]
and N = {f ∈ R | fhas nonzero constant term}. Then F [T ]N is an atomic
domain which does not satisfy ACCP.

Example 5.5. Let K be a field and T the additive submonoid of Q+ gen-
erated by {1/2, 1/3, 1/5, . . . , 1/pj, . . . }, where pj is the jth prime. Then the
monoid domain R = K[T ] satisfies ACCP.

For a 0 6= f = b1X
a1 + . . . bnX

an ∈ R with a1 < · · · < an and bn 6= 0,
write β(f) = an. If ACCP fails, the there is a strictly increasing chain (f1) ⊂
(f2) ⊂ . . . of principal ideals in R. Then each fn = fn+1gn+1 for some nonunit
gn+1 ∈ R. Hence each β(fn) = β(fn+1) + β(gn+1), and each term is positive.
Then in T , we have β(f1) > β(f2) > . . . with each β(fn) − β(fn+1) ∈ T ,
but this is impossible by the above-mentioned unique representation of each
nonzero a ∈ T .

Example 5.6. ([10]) Let K be a field, T = {q ∈ Q | q > 1}∪{0} an additive
submonoid of Q+, and R = K[T ] the monoid domain. Then RS = K[Q],
where S = {X t | t ∈ T}, is not atomic since RS is a GCD-domain, but RS

does not satisfy ACCP.
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