
Certain cryptographic systems based on
an algebraic structure

Maximilian Duda, mxdu0407@gmail.com,
Marta Hanc, marta.hanc@student.ukw.edu.pl

Sebastian Kowalski, kspterna@student.ukw.edu.pl

 Lukasz Matysiak, lukmat@ukw.edu.pl(∗),
Martin Waldoch, martin.waldoch@student.ukw.edu.pl

Kazimierz Wielki University
Bydgoszcz, Poland

January 26, 2022

Abstract

In this paper we consider certaine cryptographic systems based
on an Dedekind structure and Galois structure. We supplemented the
created cryptosystems based on the Dedekind structure with programs
written in C ++. Also we discuss about the inner structure of Galois
in cryptography. It is widely recognized that such a structure is based
only on finite fields. Our results reveals something more internal. The
final section is a supplement information about square-free and radical
factorizations in monoids consisting in searching for a minimal list of
counterexamples. As an open problem, we leave creating a program
that would generate such a list and how to use such a list to create a
cryptosystem.

1 Introduction

In this paper we present developed cryptographic programs written in C
++ (see Sections 2 and 3). These cryptographic systems are based on the

Keywords: monoid, cryptography, Dedekind domain, Galois extension, factorization.
2010 Mathematics Subject Classification: Primary 94A60, Secondary 11R32.
(∗) Corresponding author

1

Dedekind structure known in mathematics [2], [3]. This is the motivation
coming from the reviewer of the paper [1], and from paper [2].

Dedekind domains are one of the most important rings in algebra. It has
many valuable properties and has many uses. In such ring every nonzero
proper ideal factors into primes and every non-zero fractional ideal of that
ring is invertible.

In Section 2 we introduce a cryptographic programs, where the key is
analog to the fractional ideal. In Section 3 we have a cryptographic programs,
where an alphabet is analog to the fractional ideal.

In section 4 we have complementary of [1] and [2]. We presented the
application of polynomial composites and monoid domains in cryptology in
the form of certain cryptosystems. In this paper we present a program about
this.

In section 5 we have a cryptosystem based on a certain Galois extension.
Let’s recall a Galois extension is an algebraic field extension K ⊂ L that
is normal and separably. We introduce an example of such cryptosystem
using Q ⊂ Q(

√
2,
√

3) which is a Galois extension. This cryptosystem can be
freely modified while maintaining the idea of its operation. The motivation
here was the creation of a cryptosystem based on the Galois theory. They
do exist, of course, but there is only talk of finite fields. To our knowledge,
there are no cryptosystems that go deeper into this science so far.

By a monoid we mean a commutative cancellative monoid. In section 6
we have a minimal list of possible counterexamples to find in monoids. In
[4] Section 4 we have 24 square-free and radical factorizations and all depen-
dencies in general monoids and in particular monoids (GCD-, pre-Schreier-,
SR-, ACCP-, atomic, factorial monoids).

Recall that a monoid is called GCD-monoid, if for any two elements
there exists a greatest common divisor. A monoid H is called a pre-Schreier
monoid, if any element a ∈ H is primal, i.e. for any b, c ∈ H such that a | bc
there exist a1, a2 ∈ H such that a = a1a2, a1 | b and a2 | c. A monoid H
is called SR-monoid, if every square-free element is radical (This definition
comes from [4]). A monoid H is called ACCP-monoid any ascending sequence
principal ideals of H stabilizes, i.e. for all sequence of principal ideals I1 ⊂
I2 ⊂ . . . there exists n ∈ N such that In = In+1 = A monoid H is
called atomic, if every non-invertible element a ∈ H be a finite product of
irreducibles (atoms). A monoid H is factorial, if each non-invertible element
can be written as a product of irreducible elements and this representation
is unique.

2

Recall that every factorial monoid is ACCP-monoid, and ACCP-monoid
is atomic. And recall that every factorial monoid is GCD-monoid is pre-
Schreier. Since every pre-Schreier is AP-monoid (in such monoid an irre-
ducible element (atom) is prime), then every atomic and AP-monoid is fac-
torial.

In section 6 of this paper we consider a minimal list of counterexamples
that we can look for. Some of them are at [4] Section 7.

2 The first cryptosystem with a Dedekind

structure

Let us recall from [2] Section 2 the first cryptosystem mentioned.

Let A = {a0, a1, . . . , an} be an alphabet such that |A| be a prime number.
Let x ∈ {2, 3, . . . , |A|} be the value of one of the letters of the alphabet, k ⩾ 2
be an key. Then

y = xk (mod |A|),

where y be the value of one of the letters of the alphabet be an encrypted
letter.

Now, assume we have encrypted letter y. Then we get a decrypted letter
x by a formula

x = (y + (k − d) · |A|) · k−1,

where d be the remainder of dividing y by k.

The proof of the above formula is in [2], Section 2.

Below we present the algorithm in C++, it has a predefined 28-character
alphabet. We encourage to modify the algorithm.

#include <iostream>

using namespace std;

char pub_alphabet[29], message[100]={}, test=message[100];

int x[29], p=29,noc,k;

int calc_number_of_charactes()

3

{

noc=0;

for(int i=0; i<100; i++)

{

if(message[i]!=test)

noc++;

}

return noc;

}

int search_ch(char a)

{

char test_key=’A’;

for(int i=0; i<p; i++)

{

if(a==test_key)

return i+2;

else

{

test_key++;

}

}

}

int encrypt(int m)

{

return (m*k)%p;

}

int main()

{

pub_alphabet[0]=’A’;

x[0]=2;

for(int i=1; i<=28; i++)

{

x[i]=2+i;

pub_alphabet[i]=’A’+i;

}

pub_alphabet[28]=’ ’;

4

do

{

cout << "Enter a key(must be equal or greater than 2)" <<

endl;

cin >> k;

}while(k<2);

cout << "Write a message to encrypt(max 100 characters)" <<

endl;

cin >> message;

calc_number_of_charactes();

for(int i=0; i<noc; i++)

{

message[i]=toupper(message[i]);

cout << encrypt(search_ch(message[i])) << " ";

}

return 0;

}

3 The second cryptosystem with a Dedekind

structure

Let us recall from [2], Section 3 the second cryptosystem mentioned.

Let A be a set of characters. Assume |A| is equal to any prime number.

Secretly establish a second alphabet A′ such that A′ ⊂ A with a prime
length.

Let m1m2m3 . . .mn be a message, we want to encrypt.

A secret short alphabet A′ divides a large public alphabet into zones. We
skip the extra characters such that 0, 1. So we have a clean alphabet from
2. Let’s move one over, so we have 1. Suppose p = |A|, q = |A′|. We have⌈p
q

⌉
zones. Zero zone, includes the alphabet from 1 to q. The first zone, i.e.

the alphabet from q + 1 to 2q and so on. The last zone (
⌈p
q

⌉
− 1) includes

the alphabet from
⌈p
q

⌉
q to p.

5

Let’s extend the message values with random numbers informing us about
a given zone of a given letter (this information denote by zi):

z1m1z2m2 . . . znmn

Denote by k the key. Multiply each value of the message (not the infor-
mation about the zone) by k and use the modulo q.

Hence ciphertext is:
z1d1z2d2 . . . zndn,

where d1d2 . . . dn be a encrypted message.

Now let’s decode the message.

z1d1z2d3 . . . zndn

by dividing it into blocks (each block contains a zone and a message).

Let’s apply the formula:

mi =
di + (zi + ti · k)|A|

k
,

where mi is the decoded letter, di encrypted letter, z is a number satisfies a
congruence |A|−1zi ≡ di (mod k), k be the key, t be a zone.

Below we present an algorithm in C ++. This program is limited to 100
characters. We leave it open as to how this program can be improved and
also encourage to modify the algorithm.

#include <iostream>

using namespace std;

char pub_alphabet[29], priv_alphabet[3]={’A’,’B’,’C’},

message[100]={}, test=message[100];

int x[29], p=29, q=3,noc,k;

int calc_number_of_charactes()

{

noc=0;

for(int i=0; i<100; i++)

{

6

if(message[i]!=test)

noc++;

}

return noc;

}

int zones(int x)

{

int y=0;

while(x>=q)

{

y++;

x-=q;

}

return y;

}

int search_ch(char a)

{

char test_key=’A’;

for(int i=0; i<p; i++)

{

if(a==test_key)

return i;

else

{

test_key++;

}

}

}

int encrypt(int m)

{

return (m*k)%q;

}

bool key_check()

{

if(k%3!=0)

return true;

7

else

return false;

}

int main()

{

pub_alphabet[0]=’A’;

x[0]=2;

for(int i=1; i<=28; i++)

{

x[i]=2+i;

pub_alphabet[i]=’A’+i;

}

pub_alphabet[28]=’ ’;

do

{

cout << "Enter a key (must not be divisible by 3)" << endl;

cin >> k;

}while(key_check()==false);

cout << "Write a message to encrypt(max 100 characters)" <<

endl;

cin >> message;

calc_number_of_charactes();

for(int i=0; i<noc; i++)

{

message[i]=toupper(message[i]);

cout << zones(search_ch(message[i])) <<

encrypt(search_ch(message[i])) << " ";

}

return 0;

}

8

4 Cryptosystem based on monoid domains.

Let us recall from [2], Section 5:

Recall that if F be a field and M be a submonoid of Q+ then we can
construct a monoid domain:

F [M] = F [X;M] = {a0Xm0 + · · · + anX
mn | ai ∈ F,mi ∈ M}.

Any alphabet of characters creates a finite set. Most ciphers are based
on finite sets. But we can have the idea of using the infinite alphabet A,
although in reality they can be cyclical sets with an index that would mean
a given cycle. For example, A0 - 0, B0 - 1, . . . , Z0 - 25, A1 - 0, B1 - 1, . . . ,
where Ai=A, . . . , Zi=Z for i = 0, 1, We see that this is isomorphic to a
monoid N0 non-negative integers by a formula

f : A → N, f(mi) = i.

Then we can use a monoid domain by a map

φ : A → F [A], φ(m0,m1, . . . ,mn) = a0X
m0 + . . . anX

mn .

We want to encrypt the message m0m1m2 . . .mn (the letters transform
to numbers by a function φ). We establish the secret key X. Let F be a
field. We determine any coefficients from this field: a0, a1, . . . , an. Then the
message m0m1m2 . . .mn be transformed into a polynomial of the form:

a0X
m0 + a1X

m1 + · · · + anX
mn .

We compute for i = 0, 1, . . . , n: di = aiX
mi (mod |A|) (|A| must be prime)

and then we have a decrypt message d0d1 . . . dn.

To decrypt it we need to use a formula (for i = 0, 1, . . . , n):

mi = logX

di
ai

(mod |A|).

The following program is a modification of the presented mathematical
algorithm. The user enters the key, the program creates coefficients which
are successive powers of 2 modulo 10.

9

#include <iostream>

#include <math.h>

using namespace std;

char message[100]={}, test=message[100];

int p=29,noc,k;

struct polynomial

{

char a;

int x;

};

int calc_number_of_charactes()

{

noc=0;

for(int i=0; i<100; i++)

{

if(message[i]!=test)

noc++;

}

return noc;

}

int search_ch(char a)

{

char test_key=’A’;

for(int i=0; i<p; i++)

{

if(a==test_key)

return i;

else

{

test_key++;

}

}

}

int encrypt(int m, int x)

10

{

int en;

en=x*pow(k,m);

return en%p;

}

int main()

{

polynomial table[29];

table[0].a=’A’;

for(int i=1; i<=28; i++)

{

table[i].x=2;

table[i].x=pow(table[i].x,i);

table[i].x%=10;

table[i].a=’A’+i;

}

table[28].a=’ ’;

cout << "Enter a key" << endl;

cin >> k;

cout << "Write a message to encrypt(max 100 characters)" << endl;

cin >> message;

calc_number_of_charactes();

for(int i=0; i<noc; i++)

{

message[i]=toupper(message[i]);

cout << encrypt(search_ch(message[i]),

table[search_ch(message[i])].x) << " ";

}

cout << endl;

int de;

return 0;

}

11

5 A cryptosystem based on a certain Galois

extension

Let L be a Galois extension field of Q. Recall, if K ⊂ L is a Galois
extension, then AutKL is called the Galois group of K ⊂ L and denoted by
G(L | K). It is well known how to form a Galois group of such an extension.
We show a simple example.

Let L = Q(
√

2,
√

3). Of course L is a Galois extension field of Q. Then
Gal(L | Q) = {σ1, σ2, σ3, σ4}, where
σ1(a + b

√
2 + c

√
3 + d

√
6) = a + b

√
2 + c

√
3 + d

√
6 = id,

σ2(a + b
√

2 + c
√

3 + d
√

6) = a + b
√

2 − c
√

3 − d
√

6,
σ3(a + b

√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3 − d

√
6,

σ4(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2 − c
√

3 + d
√

6,
with a, b, c, d ∈ Q.

Automorphisms σ1, σ2, σ3, σ4 will be conveniently written as:
σ1(a, b, c, d) = (a, b, c, d) = id,
σ2(a, b, c, d) = (a, b,−c,−d),
σ3(a, b, c, d) = (a,−b, c,−d),
σ4(a, b, c, d) = (a,−b,−c, d).

Consider an english alphabet which has 26 letters. Let m1m2m3m4 be a
4-letter block of a certain message.

In Galois group we ignore id because it doesn’t change anything. Let’s
encode the block with the automorphism σ2:

σ2(m1,m2,m3,m4) = (m1,m2,−m3,−m4).

Then we switch −m3 into the letter that has the opposite possition in the
alphabet, for example D is the 4th letter of the alphabet, so −D we switch
into W because W is the 4th to last letter of the alphabet. Similarly we do
with −m4.

If a letter such m1 doesn’t change as a result we check what place in the
alphabet does it take up and we divide by 2, and switch with the letter that
has that position. But, if the remainder of dividing this letter’s position by 2
equals 1, then we round down and instead of placing a capital letter, we place
a small one. Similarly m2. The table below may help with the operation.

12

Place Letter Negative letter The letter it turns into if it doesn’t change
1 A Z z
2 B Y A
3 C X a
4 D W B
5 E V b
6 F U C
7 G T c
8 H S D
9 I R d
10 J Q E
11 K P e
12 L O F
13 M N f
14 N M G
15 O L g
16 P K H
17 Q J h
18 R I I
19 S H i
20 T G J
21 U F j
22 V E K
23 W D k
24 X C L
25 Y B l
26 Z A M

We encode very similarly with the other automorphisms.

Using the table above and the Galois group, we can decode the encoded
message without any problems.

In a very similar way, we can create an analogous cryptosystem, where
the key will be an extension field of rational numbers, and if the addressee
knows the Galois theory, he will easily calculate the Galois group of such
extension and perform the appropriate steps.

From [5] Theorem 2.2. we know that every finite group is a Galois group
of certain extension field of Q. This means that instead of extension field of
Q, we can pass a finite group as a key, which further increases the security
of our cryptosystem.

13

6 Minimal list of counterexamples in monoids

In [4] Section 4 author consider 24 square-free and radical factorizations
and all dependencies in general monoids and in particular monoids. In this
section we consider a minimal list of possible counterexamples that we can
look for in a commutative cancellative monoids. Some of them are at [4]
Section 7.

The statement that there are (in general) no other implications than the
ones stated in [4] is equivalent to the existence of the following counter-
examples.

1. Any monoid satisfying: 4s∧¬0s, 5s∧¬0s, 5.1s∧¬0s, 3s∧¬1s, 5.1s∧
¬4s, 4s∧¬4.1s, 2s∧¬4.2s, 5.3s∧¬4.2s, 1s∧¬5s, 3s∧¬5s, 4s∧¬5s,
5.1s ∧ ¬5s, 2s ∧ ¬5.3s, 4s ∧ ¬5.3s, 4.1s ∧ ¬5.3s, 1s ∧ ¬6s, 4s ∧ ¬6s,
5s∧¬6s, 5.1s∧¬6s, 5r∧¬0r, 0r∧¬1r, 3r∧¬1r, 5.1r∧¬4r, 5.2r∧¬4.1r,
1r∧¬4.2r, 3r∧¬4.2r, 5.3r∧¬4.2r, 1r∧¬5.3r, 3r∧¬5.3r, 4r∧¬5.3r,
1r ∧ ¬6r, 4r ∧ ¬6r.

2. Non-factorial GCD-monoids satisfying: 4/5s∧¬0s/1s/2s/3s, 6s∧¬4.1s
/5.1s, 5.3s ∧ ¬4.2s/5.2s, 4.1s/5.1s ∧ ¬6s.

3. Pre-Schreier non-GCD-monoids satisfying: 4s/5s ∧ ¬0, 4.1s/5.1s ∧
¬4s/5s, 4.2s/5.2s∧¬4.1s/5.1s, 5.3s∧¬4.2s/5.2s, 3s∧¬5.3s, 0s∧¬6s,
4.1s/5.1s ∧ ¬6s.

4. SR-non-pre-Schreier monoids satisfying : 5s∧¬0s, 0s∧¬1s, 3s∧¬1s,
5.1s∧¬4s, 5.2s∧¬4.1s, 1s∧¬4.2s, 3s∧¬4.2s, 5.3s∧¬4.2s, 1s∧¬5.3s,
3s ∧ ¬5.3s, 4s ∧ ¬5.3s, 1s ∧ ¬6s, 4s ∧ ¬6s.

5. Non-factorial ACCP-monoids satisfying: 4s∧¬0s, 4.1s∧¬0s, 5.2s∧¬0s,
6s ∧ ¬0s, 0s ∧ ¬1s, 5.1s ∧ ¬4s, 4s ∧ ¬4.1s, 5.2s ∧ ¬4.1s, 2s ∧ ¬4.2s,
5.3s ∧ ¬4.2s, 6s ∧ ¬4.2s, 1s ∧ ¬5s, 4s ∧ ¬5s, 4.1s ∧ ¬5s, 5.3s ∧ ¬5s,
6s ∧ ¬5s, 2s/3s ∧ ¬5.3s, 4s ∧ ¬5.3s, 4.1s ∧ ¬5.3s, 1s ∧ ¬6s, 4s ∧ ¬6s,
4.1s ∧ ¬6s, 5.2s ∧ ¬6s, 4r ∧ ¬0r, 5.3r ∧ ¬0r, 0r ∧ ¬1r, 4.1r ∧ ¬4r,
4.2r ∧ ¬4.1r, 1r ∧ ¬4.2r, 5.3r ∧ ¬4.2r, 1r ∧ ¬5.3r, 4r ∧ ¬5.3r.

6. An atomic non-ACCP monoid satisfying exactly the same conditions
as in 1.

We strongly encourage to write a program that generates the minimum
set of counterexamples for any set of implications. And we leave the
question about how to use such a list to create a cryptosystem.

14

References

[1] Matysiak, L, Generalized RSA cipher and Diffie-Hellman protocol, J.
Appl. Math.& Informatics Vol.39 (2021), No. 1 - 2, pp. 93 – 103

[2] Matysiak, L, A structure of Dedekind in the
cryptosystem, https://lukmat.ukw.edu.pl/files/

A-structure-of-Dedekind-in-the-cryptosystem.pdf, (2021).

[3] Jankowska, M., Matysiak, L, A polynomial composites and monoid do-
mains as algebraic structures and their applications, Global Journal of
Science Frontier Research: F Mathematics and Decision Sciences, 21 (3),
(2021).

[4] Matysiak, L, On square-free and radical factorizations and existence of
some divisors and relationships with the Jacobian conjecture, (2021).

[5] Matysiak, L, A finite group is a Galois group, (2022).

15

https://lukmat.ukw.edu.pl/files/A-structure-of-Dedekind-in-the-cryptosystem.pdf
https://lukmat.ukw.edu.pl/files/A-structure-of-Dedekind-in-the-cryptosystem.pdf

	Introduction
	The first cryptosystem with a Dedekind structure
	The second cryptosystem with a Dedekind structure
	Cryptosystem based on monoid domains.
	A cryptosystem based on a certain Galois extension
	Minimal list of counterexamples in monoids

