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Abstract. In this paper we present an equivalent statement to the Jacobian
conjecture using square-free and maximal ideals. We will show that the equiv-
alent hypothesis is true, which implies that the Jacobian conjecture is true.

1. Introduction

The Jacobian conjecture, formulated by Keller [1] in 1939, is one of the
most important open problems stimulating modern mathematical research (see
[2]). In this article we deal with the problem of the Jacobian conjecture for Cn.
The results can be generalized to an n-dimensional algebraically closed field. We
present a positive solution to this conjecture.

Jacobian conjecture. If the polynomial mapp F : Cn → Cn has a non-zero
Jacobian constant, then F is an automorphism.

This conjecture is one of the classic problems of polynomial mapping theory
and has many implications and applications in algebraic geometry, number the-
ory, and holomorphic dynamics. There are various approaches to this problem,
based on algebraic, analytical or combinatorial methods. More information on
this subject can be found in two monographs [3], [5].

It is worth noting that in [4] the authors showed the relationship between
the Jacobian hypothesis and irreducible and square-free elements in certain rings
of polynomials. In this article, we will also show relationships, although not
motivated by [4].

Article [6] defines the concept of a square-free ideal, i.e. it is an ideal I
in the ring R, where it cannot be represented as I = J2K, where J and K are
ideals in R, different from I, and J is a proper ideal. Also in [6], equivalent
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definitions of the square-free ideal are presented, but in this article we will also
use the definition that I2 = I.

In this article, we will show an equivalent statement to the Jacobian hy-
pothesis, which is based on the square-free and maximal ideals. We will also
present a positive solution to the Jacobian hypothesis.

2. Main result

Let us begin by presenting an equivalent statement to the Jacobian conjec-
ture.

Theorem 2.1. Let A = C[x1, . . . , xn]. Let I = (F1, . . . , Fn be the ideal generated
by the coordinates F = (F1, . . . , Fn) : Cn → Cn. Let J = (J1, . . . , Jn) be the ideal
generated by the coordinates G = (G1, . . . , Gn) : Cn → Cn such that G(F (x)) =
x for each x ∈ Cn Then the Jacobian conjecture is equivalent to the following
statement:

If I is a square-free ideal in A, then J is maximal in A.

Proof. If the ideal I is square-free in A, then I2 = I. Every square-free ideal is
radical, i.e. I = Rad(I). From Nullstellensatz, we know that there is a bijection
between the radical ideals of A and the closed algebraic subsets of Cn. So I
corresponds to some subset of V ⊂ Cn such that V 2 = V . Since F is a locally
bijection, V is discrete and finite. So V = {x1, . . . , xk} for some k ∈ N and
xi ∈ Cn. Note that F (xi) = xi for each i = 1, . . . , k. This means that G belongs
to the maximal ideal M ⊂ A corresponding to the set V . Since G(F (x)) = x
for each x ∈ Cn, this means that G belongs to the core of the I ideal in A. So
J ⊂ c(M ∩ I) ⊂ A, where c(M ∩ I) is a core of the ideal M ∩ I, i.e. c(M ∩ I) =
{P ∈ A : P (M ∩ I) ⊂ I}. Since M is maximal in A and J is not non-zero in A
(because G is not constant), then J = M .

If I is maximal in A, then J corresponds to a single point x ∈ Cn. So
G(x) = x and G(F (x)) = x for each x ∈ Cn. So F is invertible and F−1 = G.
Since F and G are polynomial, their Jacobians are non-zero on Cn. □

Example 2.2. Let F : C2 → C2 be the polynomial map given by F (x, y) = (x2 +
y2, xy). Let I = (x2 + y2, xy) and J = (x, y) be the ideal generated by the
coordinates F and G = F−1 of the polynomial ring A = C[x, y]. Let’s check if
the Jacobian conjecture holds for F .

Let’s calculate the Jacobian F . Then J(F ) = 2x2 − 2y2. Note that J(F )
is non-zero on C2 only if x ̸= ±y. So F is a locally bijection on C2 {(x, x) : x ∈
C} ∪ {(x,−x) : x ∈ C}.



THE JACOBIAN CONJECTURE AND SQUARE-FREE IDEALS 3

Let’s calculate the inverse of F , which is G = F−1. From the equality
F (x, y) = (u, v) we get a system of equations x2+y2 = u and xy = v. Solving it for

x and y, we get x =
u+

√
u2 − 4v

2
and y =

u−
√
u2 − 4v

2
or x =

u+
√
u2 − 4v

2

and y =
u−

√
u2 − 4v

2
. SoG(u, v) =

(
u+

√
u2 − 4v

2
,
u−

√
u2 − 4v

2

)
orG(u, v) =(

u−
√
u2 − 4v

2
,
u+

√
u2 − 4v

2

)
. Note that G is defined as C2 only if u2 ⩾ 4v.

So F is a globally bijection on {(x, y) : 2x2 ⩾ 2y2}.
Let’s check if I is square free in A. Suppose that I = J2L for some ideals

J , L of A, where J is a proper ideal. Then I = JJL ⊂ JL ⊂ I, so JL = I. Since
J is a proper ideal, then JL ⊂ J . So I ⊂ J , which means that x2 + y2 and xy
belong to J . But then x and y belong to J (because they are roots of x2 + y2

and xy), so J = A. Contradiction.

Let’s check if J is maximal of A. Suppose that there is an ideal K in A
such that J ⊂ K ⊂ A and K ̸= J,A. Then there is the polynomial P ∈ \J .
Since P is not in J = (x, y), P is not divisible by x or y. So P has the form
P = a0 + a1x + a2y + a3xy + a4x

2 + a5y
2 + a6x

3 + a7y
3 + . . . for some ai ∈ C.

Because K ⊂ A and K ̸= A, K does not contain constant non-zero polynomials.
So a0 =0. Since K ⊂ I = (x2 + y2, xy), then P must be divisible by x2 + y2

or by xy. But that’s impossible because P has no common factors with x or y.
Contradiction.

Thus, the Jacobian conjecture holds for F : C2 → C2.

Several conclusions can be drawn from the above Theorem, e.g. that the
ideals I and J are orthogonal or conjugate, but we are most interested in the
following conclusions.

Corollary 2.3. With the above designations:

(1) The ideals I and J are radical.
(2) The ideals I and J are relatively prime.

Proof. (1) The ideal I = (F1, . . . , Fn) is a primary ideal because it is generated
by the coordinates of the mapping F , which is a ring homomorphism. Thus its
radical is a prime ideal generated by the kernel F .

Similarly, the ideal J = (J1, . . . , Jn) is a primary ideal because it is gener-
ated by the coordinates of the map G, which is a homomorphism and inverse of
F . Thus its radical is the prime ideal generated by the kernel G.
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To show that I and J are radical, it suffices to show that they are prime.
If Fi and Gi are irreducible of A, then the ideals (Fi) and (Gi) are prime of A.
So the ideals I and J are the products of prime ideals and are also prime in A.

(2) From (1) we know that the ideals I and J are primary ideals of A. We will
show that the radicals of the ideals I and J are also prime and generate the same
ideals. From the definition of a radical, we have that if x ∈

√
I, then xn ∈ I

for some n > 0. Similarly, if x ∈
√
J , then xn ∈ J for some n > 0. Thus

√
I

and
√
J are primary ideals of A. Moreover, from the radical property we have√

IJ =
√
I ∩

√
J . So if x ∈

√
I or c ∈

√
J , then xn ∈ IJ for some n > 0. Hence√

I ∩
√
J is a prime ideal in A. But since I and J are prime and primary, they

must be equal to their radicals. So we have
√
I =

√
J = I = J .

From the ideal sum property, we have I+J ⊆
√
I+

√
J . But since

√
I =

√
J ,

then we have
√
I +

√
J =

√
I. So we have I + J ⊆

√
(I). On the other hand,

let r ∈ A be arbitrary. Then rn ∈ A for every n > 0. Since
√
I is the smallest

ideal containing I, it must contain all powers of rn. So there is n > 0 such that
rn ∈

√
I. But since

√
I is primary and prime, then r ∈

√
I. So we have A ⊆

√
I.

Hence I + J =
√
I = A. We have shown that the ideals I and J are relatively

prime, that is, their sum is equal to the entire ring A. □

The next Theorem will help us to solve the problem of the Jacobian con-
jecture positively.

Theorem 2.4. Let A = C[x1, . . . , xn]. Let I and J be radical, relatively prime,
ideals of A. If I is a square-free ideal of A, then J is maximal in A.

Proof. Let I and J be radical, relatively prime ideals in A. Assume I is a square-
free ideal. We will show that J is a maximal ideal in A. Suppose that there is
an ideal K of A such that J ⊂ K ⊂ A. Then there is an element k ∈ K \ J
such that k ̸= 0. We want to show that k is invertible of A, that is, there is an
element in l ∈ A such that kl = 1.

Since k ∈ K \ J , then k /∈ J . So k is not a root of any polynomial of J . In
particular, k is not a root of the polynomial j0 ∈ J such that 1 = i0 + j0. So the
polynomial j0 − k has exactly one root k with multiplicity 1.

Since k ∈ K ⊂ A, then k is a polynomial of n variables with complex
coefficients. So it can be decomposed into a product of linear factors over C:

k = c(x− a1)(x− a2) . . . (x− an),
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where c ∈ C \ {0} is a constant, a1, . . . , an ∈ C are roots of k (perhaps
with repetitions). Note that since k is square free in A (because it belongs to I),
then every root of ai has a multiplicity of 1.

Now, we want to show that every root of ai belongs to I. Suppose that
there is a root ai such that ai /∈ I. Then ai is not a root of any polynomial of I.
In particular, ai is not a root of the polynomial i0 of I such that 1 = i0 + j0. So
the polynomial i0 − ai has exactly one root ai with multiplicity 1.

Now, consider the polynomial f = (j0 − k)(i0 − ai) belonging to A. Note
that f has exactly two roots: k with a multiplicity of 1 (because j0 − k has only
one root k with a multiplicity of 1) and ai with a multiplicity of 1 (because i0−ai
has only one root ai with a multiplicity of 1). So f is a quadratic polynomial of
A.

Since 1 = i0 + j0, then f = −(j0 − k)i0 + (i0 − ai)j0. So f belongs to the
ideal IJ . Since IJ is a radical ideal of A, then every root of f belongs to IJ . In
particular, k belongs to IJ . But k also belongs to K, so k belongs to IJ ∩K.

On the other hand, since I and J are relatively prime ideals of A, then
IJ = I ∩ J . So k belongs to (I ∩ J) ∩K = I ∩ (J ∩K). But J ∩K ⊆ J , so k
belongs to I ∩ J . But I ∩ J = {0} because I + J = A, so k = 0. Contradiction.

So J is a maximal ideal of A. □

We can draw conclusions from the above considerations.

Corollary 2.5. The Jacobian conjecture is true.

Proof. By Theorem 2.1 it suffices to show that if I is a square-free ideal of A, then
J is a maximal ideal of A, with the notation of Theorem 2.1. From Corollary 2.3
we know that the ideals I and J are radical and relatively prime. Then just use
the theorem 2.4. □
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[4] P. J ↪edrzejewicz,  L. Matysiak, J. Zieliński, On some factorial properties of subrings, Univ. Iagel. Acta Math.

54, 43-52, 2017.
[5] Arno van den Essen, Shigeru Kuroda, Anthony J. Crachiola, Polynomial automorphisms and the Jaco-

bian conjecture, New results from the beginning of the 21st century. Frontiers in Mathematics. Birkhäuse
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