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GENERALIZED RSA CIPHER AND DIFFIE-HELLMAN

PROTOCOL
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Abstract. In this paper I am considering several cryptological threads.

The problem of the RSA cipher, like the Diffie-Hellman protocol, is the use

of finite sets. In this paper, I generalize the RSA cipher and DH protocol for
infinite sets using monoids. In monoids we can not find the inverse, which

makes it difficult. In the second part of the paper I show the applications

in cryptology of polynomial composites and monoid domains. These are
less known structures. In this work, I show different ways of encrypting

messages based on infinite sets.
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1. Introduction

RSA is one of the first public-key cryptosystems and is widely used for se-
cure data transmission. In such a cryptosystem, the encryption key is public
and distinct from the decryption key which is kept secret (private). In RSA,
this asymmetry is based on the practical difficulty of factoring the product of
two large prime numbers, the ”factoring problem”. The acronym RSA is the
initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adle-
man, who publicly described the algorithm in 1977. Clifford Cocks, an English
mathematician working for the British intelligence agency Government Commu-
nications Headquarters (GCHQ), had developed an equivalent system in 1973,
which was not declassified until 1997.[21]

A user of RSA creates and then publishes a public key based on two large
prime numbers, along with an auxiliary value. The prime numbers must be kept
secret. Anyone can use the public key to encrypt a message, but only someone
with knowledge of the prime numbers can decode the message.[20] Breaking
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RSA encryption is known as the RSA problem. Whether it is as difficult as
the factoring problem is an open question. There are no published methods to
defeat the system if a large enough key is used.

RSA is a relatively slow algorithm, and because of this, it is less commonly
used to directly encrypt user data. More often, RSA passes encrypted shared
keys for symmetric key cryptography which in turn can perform bulk encryption-
decryption operations at much higher speed.

More about the RSA cryptosystem can be found in many position, for example
in [20], [7], [14].

Diffie–Hellman key exchange is a method of securely exchanging cryptographic
keys over a public channel and was one of the first public-key protocols as con-
ceived by Ralph Merkle and named after Whitfield Diffie and Martin Hellman.[18],
[9] DH is one of the earliest practical examples of public key exchange imple-
mented within the field of cryptography.

Traditionally, secure encrypted communication between two parties required
that they first exchange keys by some secure physical means, such as paper
key lists transported by a trusted courier. The Diffie–Hellman key exchange
method allows two parties that have no prior knowledge of each other to jointly
establish a shared secret key over an insecure channel. This key can then be
used to encrypt subsequent communications using a symmetric key cipher.

Diffie–Hellman is used to secure a variety of Internet services. However, re-
search published in October 2015 suggests that the parameters in use for many
DH Internet applications at that time are not strong enough to prevent com-
promise by very well-funded attackers, such as the security services of large
governments.[8]

The scheme was published by Whitfield Diffie and Martin Hellman in 1976,[9]
but in 1997 it was revealed that James H. Ellis,[10] Clifford Cocks, and Malcolm
J. Williamson of GCHQ, the British signals intelligence agency, had previously
shown in 1969[24] how public-key cryptography could be achieved. [12]

Although Diffie–Hellman key agreement itself is a non-authenticated key-
agreement protocol, it provides the basis for a variety of authenticated protocols,
and is used to provide forward secrecy in Transport Layer Security’s ephemeral
modes (referred to as EDH or DHE depending on the cipher suite).

The method was followed shortly afterwards by RSA, an implementation of
public-key cryptography using asymmetric algorithms.

Expired U.S. Patent 4,200,770 from 1977 describes the now public-domain
algorithm. It credits Hellman, Diffie, and Merkle as inventors.

More about the RSA cryptosystem can be found in many position, for example
in [18], [9], [8], [10], [24], [12].



title is here 3

In the section 3 I introduce generalized RSA. The problem of such a cipher
is based on finite sets. Here I show it in infinite sets. Similarly in the sec-
tion 5 Diffie-Hellman key exhange. In sections 7 and 9 I show applications of
polynomial compositions and monoid domains to cryptology.

In sections 4, 6 and 8 we have examples.

2. Preliminaries

By a monoid, we mean a non-empty set M with an identity element and with
one associative action ∗ : M ×M → M . If action ∗ is multiplication/addition,
then this monoid is called multiplicative/additive.

Let’s define the set of natural numbers as the set of positive integers and
denote by N, and by N0 the set of all non-negative integers. We see that N be a
multiplicative monoid and N0 be an additive monoid.

Let’s define the ideal of the monoid M . Set of the form (a) = {ma : m ∈M}
(a ∈M) we call the ideal of the monoid M (in additive monoid (a) = {m+a : m ∈
M}). By the prime ideal we mean the ideal (p), where p is a prime element.
Such ideal satisfies condition for any a, b ∈M : if ab ∈ (p) then a ∈ (p) or b ∈ (p).
If A = (a), B = (b), where a, b ∈M , then AB = (a)(b) = (ab) is an ideal of M .
If M is an additive monoid and m,n ∈ M such that m > n, then |(m)| < |(n)|
and (n)(mod (m)) is equal to ideal generated by n(mod m) (this is a normal
congruence).

3. Generalized RSA cipher

We can assign an appropriate number to each letter of the alphabet: A =
0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6, H = 7, I = 8, J = 9,K = 10, L =
11,M = 12, N = 13, O = 14, P = 15, Q = 16, R = 17, S = 18, T = 19, U =
20, V = 21,W = 22, X = 23, Y = 24, Z = 25. So the alphabet is a finite
set. The opposite side can easily decipher using the length of the alphabet.
What if we extend this alphabet to an infinite set? In this situation, we can
stay with the alphabet, but extend the length to infinity. So we have A =
0 + 26k0, B = 1 + 26k1, C = 2 + 26k2, . . . , Y = 24 + 26k24, Z = 25 + 26k25, where
k0, k1, . . . , k25 ∈ N0. So, for example, the text ABACAB can be converted to
0 1 0 2 0 1, but also to 0 1 26 54 26 53. And we can give this
number sequence to encrypt.

Generating keys

Let’s choose distinct prime ideals P = (p) and Q = (q) (p, q are distinct
primes) such that N = PQ such that |N | < |(x)|, where x is the length of the
alphabet.

Compute Φ(N) = (ϕ(n)) := (P − 1)(Q− 1) = (p− 1)(q − 1).



4 name is here

Let’s choose the ideal E = (e) such that e and ϕ(n) are relatively primes
(gcd(e, ϕ(n) = 1)) and |Φ(N)| < |E| ( (1) = N0.

We find the ideal D = (d) such that ED ≡ 1(mod Φ(N)).

The public key is defined as the pair of ideals (N,E), while the private key is
the pair (N,D).

Encryption and decryption

We encrypt the message M = M0M1 . . .Mr by calculation

Ci ≡MiE(mod Φ(N))

.

The encrypted message C = C0C1 . . . Cr is decrypted by formula

M1 ≡ CiD(mod Φ(N)).

4. Example 1

Let’s choose prime ideals (5) and (11) from N. Hence N = (55).

Compute Φ(N) = (ϕ(55)) := (4)(10) = (40).

Let’s choose the ideal E = (e) such that e and ϕ(n) are relatively primes
(gcd(e, ϕ(n) = 1)) and |Φ(N)| < |E| ( (1) = N0. For example E = (13).

We find the ideal D = (d) such that ED ≡ 1(mod Φ(N)). We have D ≡
(37)(mod (40)).

The public key is defined as the pair of ideals (55) and (13), while the private
key is the pair (55) and (37).

We have the English alphabet: A = 00, B = 01, . . . , Z = 25. So the length of
this alphabet is 26.

We want to encrypt the message:
ALICE HAS A CAT.

Let’s assign each letter an appropriate random value that satisfies the sign
+26t, where t ∈ N. In our example, we have the following transformation:

261160020433787200542619

We encrypt as follows:
26E ≡ 26(13) ≡ (18)(mod (40))
11E ≡ 11(13) ≡ (23)(mod (40))
. . .
19E ≡ 19(13) ≡ (7)(mod (40)).

We obtained the cryptogram:

182320261229141600221807
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We decrypt the above ciphertext as follows:
18D ≡ 18(37) ≡ (26)(mod (40))
23D ≡ 23(37) ≡ (11)(mod (40))
. . .
7D ≡ 7(37) ≡ (19)(mod (40)).

We obtained an encrypted message:

261160020433787200542619 = ALICEHASACAT

5. Generalized Diffie–Hellman key exchange

First person F and second person S agree on the prime ideals (p) and (g) in
N0 such that |(p)| < |(g)|.

Person F chooses any secret (a) in N0 and sends to person S

(A) ≡ (g)(a)(mod (p)).

Person S chooses any secret (b) in N0 and sends to person F

(B) ≡ (g)(b)(mod (p)).

Person F compute (s) ≡ (B)(a)(mod (p)).

Person S compute (s) ≡ (A)(b)(mod (p)).

Person F and person S share a secret ideal (s). This is because

(s) ≡ (g)(a)(b) ≡ (g)(b)(a)(mod (p)).

6. Example 2

Alice and Bob agree on the prime ideals (29) and (3) in N0.

Alice chooses any secret (23) in N0 and sends Bob

(A) ≡ (g)(a) ≡ (3)(23) ≡ (11)(mod (29)).

Bob chooses any secret (35) in N0 and sends Alice

(B) ≡ (g)(b) ≡ (3)(35) ≡ (18)(mod (29)).

Alice compute (s) ≡ (B)(a) ≡ (18)(23) ≡ (8)(mod (29)).

Bob compute (s) ≡ (A)(b) ≡ (11)(35) ≡ (8)(mod (29)).

Alice and Bob share a secret ideal (s) = (8).
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7. Applications of polynomial composites in cryptology

In 1976 [5] authors considered the structures in the form D + M , where D is
a domain and M is a maximal ideal of ring R, where D ⊂ R. In [16] we could
prove that in composite in the form D + XK[X], where D is a domain, K is
a field with D ⊂ K, that XK[X] is a maximal ideal of K[X]. Next, Costa,
Mott and Zafrullah ([6], 1978) considered composites in the form D +XDS [X],
where D is a domain and DS is a localization of D relative to the multiplicative
subset S. In 1988 [4] Anderson and Ryckaert studied classes groups D + M .
Zafrullah in [23] continued research on structure D + XDS [X] but he showed
that if D is a GCD-domain, then the behaviour of D(S) = {a0 +

∑
aiX

i | a0 ∈
D, ai ∈ DS} = D + XDS [X] depends upon the relationship between S and the
prime ideals P od D such that DP is a valuation domain (Theorem 1, [23]).
Fontana and Kabbaj in 1990 ([11]) studied the Krull and valuative dimensions
of composite D + XDS [X]. In 1991 there was an article ([3]) that collected all
previous composites and the authors began to create a theory about composites
creating results. In this paper, the structures under consideration were officially
called as composites. After this article, various minor results appeared. But
the most important thing is that composites have been used in many theories as
examples. That is why I decided to examine all possible properties of composites
for commutative algebra. I put the first results in [16], and the next results in
[17].

Consider A and B as rings such that A ⊂ B. Put T = A + XB[X]. The
structure defined in this way is called a composite. (The definition comes from
[3]).

I generalized the concept of a composite in two different directions.

Consider A0, A1, . . . , An−1 and B be rings for any n ≥ 0 such that A0 ⊂ A1 ⊂
· · · ⊂ An−1 ⊂ B. Put Tn = A0 + A1X + · · ·+ An−1X

n−1 + XnB[X].

And let other A0, A1, . . . , An−1 and B be rings for any n ≥ 0 such that there
exists i ∈ {0, 1, . . . , n− 1}, where Ai 6⊂ Ai+1 and for every j ∈ {0, 1, . . . , n− 1}
we have Aj ⊂ B. Put T ′n = A0 + A1X + · · ·+ An−1X

n−1 + XnB[X].

I have researched many properties in [16] and [17]. I will list the most impor-
tant of them that may be related to this paper. In the following statements, for
any structure A by A∗ we mean a set of invertible elements of A.

Proposition 7.1. Let f = a0+a1X+ . . . an−1X
n−1+anX

n+ · · ·+amXm ∈ Tn

(Tn = A0 + A1X + · · · + An1
Xn−1 + XnB[X]), where 0 ≤ n ≤ m and ai ∈ Ai

for i = 0, 1, . . . , n and aj ∈ B for j = n, n + 1, . . . ,m.

(i) f ∈ T ∗n if and only if a0 ∈ A∗0 and a1, a2, . . . , am are nilpotents.
(ii) f is a nilpotent if and only if a0, a1, . . . , am are nilpotents.

Proof. [16] Proposition 2.6. �
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Theorem 7.2. Consider T = A + XB[X], where A be a subfield of B; Tn =
A0 + A1X + A2X

2 · · · + An−1X
n−1 + XnB[X], where A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂

An−1 ⊂ B be fields. Then

(i) every nonzero prime ideal of T (Tn, respectively) is maximal;
(ii) every prime ideal P different from XB[X] (in T ) is principal;

(iii) every prime ideal P different from A1X + A2X
2 + · · · + An−1X

n−1 +
XnB[X] (in Tn) is principal;

(iv) T is atomic, i. e., every nonzero nonunit of T is a finite product of
irreducible elements (atoms);

(v) Tn is atomic.

Proof. [16] Theorem 2.10. �

Since we are considering the properties of ACCP and atomicity, it is worth
looking at the properties of GCD (greatest common divisor) and pre-Schreier.

Recall any unique factorization domain is GCD domain, and any GCD domain
is pre-Schreier domain. But if assume atomic and pre-Schreier, then we have
UFD.

Example 7.3. T, Tn (See Theorem 7.2) are no GCD-domains. Let f = a1 +
b1X, g = a2 + b2X, where a1, a2 ∈ A, b1, b2 ∈ B with A + XB[X]. Then

gcd(f, g) =
a1b2 − a2b1

b2
. We see that gcd(f, g) ∈ B \A.

More information about GCD domains we can see in, e.g. [2], [19], [1].
Recall that a domain R is a pre-Schreier domain if every element a ∈ R is a

primal, i.e. for every elements b, c ∈ H if a | bc then there exist a1, a2 ∈ R such
that a1 | b, a2 | c, a = a1a2.

More information about Schreier and pre-Schreier domains we can see in many
works, e.g. in [15], [19], [1], [22], respectively.

Lemma 7.4. If A ⊂ B be fields, then T be a pre-Schreier domain. If A0 ⊂
A1 ⊂ . . . An−1 ⊂ B be fields, then Tn is also pre-Schreier domain.

Proof. [16] Lemma 2.13. �

In [17] I consider composites with ACCP and atomic properties.

Each such polynomial is the sum of the products of the variable and the
coefficient. And what if subsequent coefficient sets are appropriate cryptographic
systems? Instead of encrypting with one system, we can create one system
composed of many systems. Such a cipher is very difficult to break. If the spy
detects encryption systems (composite coefficients), then the problem will be to
find the right sum and product of such systems.

Assume that we have two people: Alice und Bob. Alice wants to send a
message to Bob. Alice has one composite type T ′n and Bob has another one
composite type T ′n.
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We can build such composite by various encryption systems (even known
ones). Let see note Lemma:

Lemma 7.5. Let f = a0 +a1X + · · ·+an−1X
n−1 +

∑m
j=n ajX

j, g = b0 +b1X +

· · ·+ bn−1X
n−1 +

∑m
j=n bjX

j ∈ T ′n, where ai, bi ∈ Ai for i = 0, 1, . . . , n− 1 and
aj , bj ∈ B for j = n, n + 1, . . .m. Then

fg ∈ A0 + XB[X].

Put Ai, Bj (i, j = 0, 1, . . . , n − 1) be different encryption systems. Then we
have f and g are composition of encryption systems. No consider B. To improve
security, let’s fix that deg f = n−1,deg g = n−k, where k ∈ {2, . . . n−1}. And
such f, g Alice and Bob agree before the message is sent.

Alice and Bob multiply these composites to form one. We have
fg = (A0 + A1X + . . . AkX

k)(B0 + B1X + · · · + BlX
l) = A0B0 + (A0B1 +

A1B0)X + · · ·+ AkBlX
k+l.

Note that the sum and product of the encryption systems must be defined in
the formula above. Definitions we leave Alice and Bob. But in this section we
can put SiSj : x→ (x)Si

(x)Sj
and Si + Sj : x→ ((x)Si

)Sj
.

So in the product we encrypt the letter as two letters, the first in the first
system and the second in the second system. And in the sum we encrypt the
letter using the first system and then the second system. Of course, we can
define completely different, at our discretion.

Assume that degree of fg is m and text to encrypt consists of more letters
then m+1. Then we divide the text into blocks of length m+1. We can assume
that fg(0) encrypts the first letter of each block. Expression at X of fg encrypts
the second letter of each block, and expression at X2 of fg encrypts the third
letter and so on.

Now, let’s see how to decrypt in this idea.

Assume that we have an encrypted message M0M1 . . .Mn. If our key is degree
m, then we divide message on m+ 1 partition. And every partion divide to two.
Every two letters are one letter of message.

Earlier we define SiSj : x→ (x)Si(x)Sj and Si +Sj : x→ ((x)Si)Sj . Then de-
cryption of two letters MlMl+1 (l = 0, 2, 4, . . . ) are MlMl+1 = (Ml)Si(Ml+1)Sj =
Nl,l+1 (one letter) and Ml = ((Ml)Si

)Sj
= (Nl)ij (one letter).

8. Example 3

Alice and Bob agree different encryption systems in the center: A0, A1, A2,
B0, B1. Next, Alice has gone far from Bob.

We have two compositions: f = A0 + A1X + A2X
2, g = B0 + B1X. Their

key is one composition in the form fg i.e.

A0B0 + (A0B1 + A1B0)X + (A2B0 + A1B1)X2 + A2B1X
3.
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The established systems are as follows:
A0 is a Caesar cipher, where the letter is shifted one letter forward;
A1 is a Caesar cipher, where the letter is shifted two letter forward;
A2 is a Caesar cipher, where the letter is shifted three letter forward;
B0 is a Caesar cipher, where the letter is shifted one letter back;
B1 is a Caesar cipher, where the letter is shifted two letter back.

Suppose Alice wants to send a message saying

0 2 4 6 8 9 6 5

The degree of fg is 3. Hence message divide to 3 + 1 partition. So the fourth
letter is the same encrypted.

Letters 0 and 8 encrypt by A0B0. Then, from definition of A0, B0, 0 will be
1 9 (two letters). 8 will be 9 7.

Letters 2 and 9 encrypt by A0B1 + A1B0. Then 2 will be 5 9 and 9 will be 2
6.

Letters 4 and 6 encrypt by A2B0 + A1B1. Then 4 will be 9 1 and 6 will be 1
3.

Letters 6 and 5 encrypt by A2B1. Then 6 will be 9 4 and 5 will be 8 3.

Bob receives a message from Alice:

1 9 5 9 9 1 9 4 9 7 2 6 1 3 8 3

Now, Bob would like to read the message. Bob sees that message has 16
letters, so the original text has 8 letters, because the composition fg has degree
3 (i.e. (3 + 1)2 letters of original message). Divide message by 8 letters.

We take the first pairs from each section, i.e. 1 9 and 9 7. Bob uses decryption
(A0B0)−1. So, 1 will be 0 by A−10 and 9 will be 0 by B−10 . Hence 1 9 will be 0.
Similarly, 9 7 will be 8.

Next, we take the second pairs from each section, i.e. 5 9 and 2 6. Bob uses
decryption (A0B1 + A1B0)−1. So, 5 9 will be 2 and 2 6 will be 9.

We take next pair, i.e. 9 1 and 1 3. Bob uses decryption (A2B0 + A1B1)−1.
So, 9 1 will be 4 and 1 3 will be 6.

Similarly, the last pairs decrypt by (A2B1)−1. The pair 9 4 will be 6 and 8 3
will be 5.

After decrypting, Bob received the message:

0 2 4 6 8 9 6 5
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9. The concept of using monoid domains in cryptology

Recall that if F be a field and M be a submonoid of Q+ then we can construct
a monoid domain:

F [M ] = F [X;M ] = {a0Xm0 + · · ·+ anX
mn | ai ∈ F,mi ∈M}.

Any alphabet of characters creates a finite set. Most ciphers are based on
finite sets. But we can have the idea of using the infinite alphabet A, although
in reality they can be cyclical sets with an index that would mean a given cycle.
For example, A0 - 0, B0 - 1, . . . , Z0 - 25, A1 - 0, B1 - 1, . . . , where Ai=A,
. . . , Zi=Z for i = 0, 1, . . . . We see that this is isomorphic to a monoid N0

non-negative integers by a formula

f : A→ N, f(mi) = i.

Then we can use a monoid domain by a map

ϕ : A→ F [A], ϕ(m0,m1, . . . ,mn) = a0X
m0 + . . . anX

mn .

Here, one should think carefully about what a field F should be and think
about additional mappings. In contrast, monoid domains can be excellent car-
riers of characters in the alphabet for monoids. This will make it harder to
break any ciphers based on monoids for one simple reason, namely, we don’t
have inverse properties in a monoid.
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