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Abstract

We discuss various square-free and radical factorizations and ex-
istence of some divisors in monoids in the context of: atomicity, as-
cending chain condition for principal ideals, a pre-Schreier property, a
greatest common divisor property and a greatest common divisor for
sets property.

1 Introduction

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }.

Throughout this paper by a monoid we mean a commutative cancellative
monoid.

Let H be a monoid. We denote by H∗ the group of all invertible elements
of H.

If a, b ∈ H are relatively primes inH, i.e. do not have a common invertible
divisor of H, then we write a rpr b. Therefore, if M be a submonoid of H
and elements a, b ∈M are relatively primes in M , then we write a rprM b.

Keywords: monoid, factorization, square-free element, radical generator, atom, Jacobian
conjecture.
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If a, b ∈ H satysfying the condition a = ub, where u ∈ H∗, then we write
a ∼ b.

The set of all irreducible elements (atoms) of H will be denoted by IrrH.
Recall that an element a ∈ H is called square-free if it cannot be presented
in the form a = b2c, where b, c ∈ H and b /∈ H∗. The set of all square-free
elements of H we will denote by Sqf H.

In [2] Theorem 5.1, with co-authors P. J ↪edrzejewicz, M. Marciniak and
J. Zieliński, we presented a full characterization of submonoids M of the
factorial monoid H satisfying the condition

(1) Sqf M ⊂ Sqf H

assuming M∗ = H∗.

The equivalence of (1) and

(2) for every a ∈ H, b ∈ Sqf H, if a2b ∈M , then a, b ∈M

in [5] has been extended to the equivalence of 8 conditions. Two of these
conditions represent a closure with respect to the 1s and 3s factorization
(See section 3), while the closure with respect to 3s was obtained at an
earlier stage of the research and published in [3].

In addition, we received a full description of such submonoids (of factorial
monoid) satisfying the condition (1). They are (with an accuracy to the in-
vertible elements) free submonoids generated by any set of pairs of relatively
prime non-invertible square-free elements.

It also turned out that the condition

(3) IrrM ⊂ Sqf H

is equivalent to the conjunction of (1) and the sentence:

(4) for every a, b ∈M , if a rprM b, then a rprH b.

We have a transparent answer to the question of when the condition (1)
be equivalent to the condition (3).

A very important step in the conducted research was finding a factorial
condition implicating the condition (3):

(5) for every a ∈ H, b ∈ Sqf H, if a2b ∈M , then a, ab ∈M .
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A natural question arose, is it a necessary condition. The answer is
negative – a counterexample was found ([2], Example 4.2). The factorial
condition to (3) is interesting, five equivalent conditions were obtained ([2],
Theorem 4.3), including closure with respect to the factorization of 2s (See
section 3).

Conditions (1) and (3) are related to the assumption found in the famous
Jacobian conjecture.

Conjecture 1.1. Let k be a field of characteristic 0. For every polynomials
f1, f2, . . . , fn ∈ k[x1, . . . , xn] with n > 1, if

jac(f1, f2, . . . , fn) ∈ k \ {0},

then
k[f1, . . . , fn] = k[x1, . . . , xn].

Recall a generalization of the Jacobian conjecture formulated in [5].

Conjecture 1.2. Let k be a field characteristic 0. For every polynomials f1,
f2, . . . , fr ∈ k[x1, . . . , xn] with n > 1 and r ∈ {2, . . . , n}, if

gcd(jacf1,f2,...,frxj1 ,xj2 ,...,xjr
, 1 6 j1 < · · · < jr 6 n) ∈ k \ {0},

then

k[f1, . . . , fr] is algebraically closed in k[x1, . . . , xn].

Under the assumption that f1, f2, . . . , fr are algebraically independent
over k, the generalized Jacobian condition (assumption of Conjecture 1.2) is
equivalent to any of the following ones ([5]):

(6) every irreducible of k[f1, . . . , fr] is square-free in k[x1, . . . , xn],

(7) every square-free of k[f1, . . . , fr] is square-free in k[x1, . . . , xn].

Conditions (1) and (3) are a generalization of conditions (6) and (7) and
therefore we call them the analogs of the Jacobian conditions.

A side effect of the presented approach was a natural question about
general relationships between square-free factorizations in different classes of
monoids. Of course, these factorizations for rings of polynomials are com-
monly known, and it is clear that their existence and uniqueness occur in
domains with uniqueness of distribution, so e.g. certain properties hold in
GCD-domains. However, these relationships have not been studied so far.

3



In this paper we will consider pre-Schreier monoids, GCD-monoids, GCDs-
monoids, ACCP-monoids, atomic monoids.

Recall that a monoid is called GCD-monoid, if for any two elements
there is a greatest common divisor. A monoid H is called GCDs-monoid,
if there is greatest common divisor for any subset of H. A monoid H is
called a pre-Schreier monoid, if for any a ∈ H the condtion is met, that for
any b, c ∈ H such that a | bc there are a1, a2 ∈ H such that a = a1a2,
a1 | b and a2 | c. A monoid H is called atomic, if every non-invertible
element a ∈ H be a finite product of irreducibles (atoms). A monoid H
is factorial, if for any non-invertible a ∈ H an element a we can presented
in the form product of irreducibles and a = q1q2 . . . qk = r1r2 . . . rl, where
q1, q2, . . . , qk, r1, r2, . . . , rl ∈ IrrH implies k = l and there is a permutation
σ such that q1 ∼ rσ(1), q2 ∼ rσ(2), . . . , qk ∼ rσ(k). A monoid H is called
ACCP-monoid any ascending sequence principal ideals of H stabilizes.

In section 4 we examine the dependencies between square-free factoriza-
tions, conditions of existence of certain square-free divisors, and between
square-free factorizations and conditions of existence of certain square-free
divisors. The conditions for the existence of certain square-free divisors re-
sult from the appropriate factorization, and the condition for the existence of
a square-free divisor in a square plays an important role in reasoning about
the inclusions (1) and (3).

In this context, the concept of a radical generator is very important intro-
duced by A. Reinhart in 2012 in [7]. The element of monoid is called radical
if the principal ideal is generated by this element be a radical ideal. The set
of all radical generators of a monoid H will be denoted by GprH. Reinhart’s
explores the properties of radically factorial monoids, i.e. such that each el-
ement is a product of radical generators. He does not consider various types
of radical factorization, nor relationships with square-free factorization. Let
us add that the property of the radical generator (although the author does
not use this name) appeared in the work of G. Angermüller published in 2017
in the Grauert-Remmert normality criterion ([1], Proposition 31).

The radical generator is square-free, so radical factorizations are square-
free factorizations. Therefore, in the section 4 we also study general relation-
ships between radical factorizations, conditions of existence of certain radical
divisors, as well as between factorizations and conditions of existence of some
divisors (square-free or radical).

In [2] the relationship between the four square-free factorizations and two
conditions for the existence of square-free divisors was investigated. In this
paper, I present the latest results, which include the dependencies binding
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the next three conditions for the existence of square-free divisors and a total
of nine factorization and conditions for the existence of radical divisors.

Let’s define another class of monoid. A monoid H is called SR-monoid,
if GprH = Sqf H.

It turns out that considering the obtained dependencies, we can consider
various ways of classifying monoids due to square-free and radical factoriza-
tion and due to the conditions of existence of certain square-free or radical
divisors. The potential number of cases is: 7, 11, 26, 57, 324, 2708, 2960.
These numbers depend on the given monoid property (GCDs, GCD, pre-
Schreier, SR, atomicity, ACCP, general, respectively). The results of these
studies are described in section 7.

2 Auxiliary statements

In this section we present the Lemmas that we will need later in the next
paper.

Lemma 2.1. Let H be a monoid.
(a) Let a ∈ Sqf H and b ∈ H. If b | a then b ∈ Sqf H.
(b) Let a ∈ GprH and b ∈ H. If b | a then b ∈ GprH.

Proof. (a) Suppose b /∈ Sqf H. Then there exists d ∈ H \H∗ such that d2 | b.
Hence d2 | a. A contradiction.

(b) [2], Lemma 6.2.

Lemma 2.2. Let H be a monoid. If a ∈ Sqf H and a = b1b2 . . . bn, then
bi rpr bj for i, j ∈ {1, . . . , n}, i 6= j.

Proof. [2], Lemma 3.1.

Lemma 2.3. Let H be a pre-Schreier monoid.

(a) Let a, b, c, d ∈ H. If ab = cd, a rpr c and b rpr d, then a ∼ d and b ∼ c.

(b) Let a1, a2, . . . , an, b ∈ H. If ai rpr b for i = 1, 2, . . . , n, then a1a2 . . . an rpr b.

(c) Let a, b ∈ H. If a rpr b, then ak rpr bl for any k, l ∈ N.

(d) Let a1, a2, . . . , an ∈ H. If a1, a2, . . . , an ∈ Sqf H and ai rpr aj for i, j ∈
{1, 2, . . . , n}, i 6= j, then a1a2 . . . an ∈ Sqf H.

(e) Let a1, a2, . . . , an ∈ Sqf H, b ∈ H. If ai rpr aj for i, j ∈ {1, 2, . . . , n},
i 6= j and ai | b for i = 1, 2, . . . , n, then a1a2 . . . an | b.
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Proof. (a), (d) The proof is similar to [4], Lemma 2 (b), (e).

(b), (e) [2], Lemma 6.3 (b), (d).

(c) Let a, b ∈ H. Assume a rpr b. Then by (b) we get ak rpr b for any k ∈ N.
And again by (b) we have ak rpr bl for any l ∈ N.

In the following Proposition we have a very important property in a pre-
Schreier monoid.

Proposition 2.4. Let H be a pre-Schreier monoid. Then

GprH = Sqf H.

Proof. [2], Proposition 6.4.

Lemma 2.5. Let H be a GCDs-monoid and a ∈ H. Let X ⊂ H be any
non-empty subset of set of divisors of a. Then there is GCD(X).

Proof. Let Y = {d ∈ H | ∃c ∈ X : a = cd}. Denote by e a greatest
common divisor of the set Y . Then e divides every element of the set Y , so
by definition of Y we get e | a. We have a = ef , where f ∈ H. We will show
f = GCD(X).

First we prove that f is least common multiple of elements of the set X.
Consider any element c ∈ X. Since c | a, then a = cd, where d ∈ H. We
have d ∈ Y , so d = eg, where g ∈ H. Thus, since d = eg, then cd = ceg, and
since ef = a = cd, then ef = ceg. Then f = cg, so c | f .

Now, we will show that every least common multiple of elements of X is
the multiple of element f . Consider any element c ∈ X such that a = cd, d ∈
Y . We know that c | h, so cd | hd, hence a | hd. Let Z = {bh, b ∈ Y }. Then
we have GCD(Z) = hGCD(Y ) = he. Since a | hl, then a | eh. We know
a = ef , hence ef | eh, so f | h.

Lemma 2.6. Let H be a monoid and X ⊂ GprH. Assume that there is
GCD(X). Then LCM(X) ∈ GprH.

Proof. Denote l = LCM(X). Consider any element b ∈ H such that l | bn
for some n ∈ N. Since l is the least common multiple of set X, then for any
c ∈ X we have c | l. Then c | bn. Because c ∈ GprH, so c | b. Then l | b.
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3 Types of factorization and square-free or

radical extraction

In this chapter we consider the relationship between square-free and rad-
ical factorizations and the conditions for the existence of some square-free or
radical divisors in some monoids.

The following properties of the monoid H are paired: the square-free ver-

sion and the radical version, for example in 0s / 0r the fragment ,,s1, s2, . . . , sn

∈ Sqf H/GprH” we read that for property 0s we have ,,s1, s2, . . . , sn ∈
Sqf H”, and for property 0r we have ”s1, s2, . . . , sn ∈ GprH”. In some
Lemmas we also have a similar formulation in two variants denoted by
Sqf H/GprH and we read in the same way that the Lemma was formulated
for square-free elements or for radical generators.

Let H be a monoid. Consider the following conditions:

0s / 0r For any a ∈ H there are n ∈ N and s1, s2, . . . , sn ∈ Sqf H/GprH
such that

a = s1s2 . . . sn,

1s / 1r for any a ∈ H there are n ∈ N and s1, s2, . . . , sn ∈ Sqf H/GprH
satysfying the condition si rpr sj for i, j ∈ {1, 2, . . . , n}, i 6= j such that

a = s1s
2
2s

3
3 . . . s

n
n,

2s / 2r for any a ∈ H there are n ∈ N and s1, s2, . . . , sn ∈ Sqf H/GprH
satysfying the condition si | si+1 for i = 1, . . . , n− 1 such that

a = s1s2 . . . sn,

3s / 3r for any a ∈ H there are n ∈ N0 and s0, s1, . . . , sn ∈ Sqf H/GprH
such that

a = s0s
2
1s

22

2 . . . s2
n

n ,

4s / 4r for any a ∈ H there are b ∈ H and c ∈ Sqf H/GprH satysfying
the condition b rpr c such that

a = bc

and there is d ∈ Sqf H/GprH such that d2 | b and b | dn for some n ∈ N,

7



4’s / 4’r for any a ∈ H there are b ∈ H and c ∈ Sqf H/GprH satysfying
the condition b rpr c such that

a = bc

and for any d ∈ Sqf H/GprH, if d | b then d2 | b,

5s / 5r for any a ∈ H there are b ∈ H and c ∈ Sqf H/GprH such that

a = bc

and a | cn for some n ∈ N,

5’s / 5’r for any a ∈ H there are b ∈ H and c ∈ Sqf H/GprH such that

a = bc

and for any d ∈ Sqf H/GprH, if d | a then d | c,

6s / 6r for any a ∈ H there are b ∈ H and c ∈ Sqf H/GprH such that

a = b2c.

4 Relationships between factorizations

Proposition 4.1. Let H be a monoid.

(a) The following implications holds:

0s

⇐ ⇐

1s ⇐ 2s ⇒ 3s

⇓ ⇓
5s 6s

(b) The following implications holds:

0r

⇐ ⇒

1r ⇐ 2r ⇒ 3r

⇓ ⇓
4r ⇐ 5r 6r

⇓ ⇓
4’r 5’r
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(c) The following implications holds:

0r 1r 2r 3r 4r 5r 6r

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
0s 1s 2s 3s 4s 5s 6s

Proof. (a) 2s⇒ 1s [4] Proposition 1, (a), (iv)⇒ (vi).

2s⇒ 3s From 2s⇒ 1s we can present an element a as a = u1u
2
2u

3
3 . . . u

n
n,

where u1, u2, . . . , un ∈ Sqf H/GprH satysfying the condition ui rpruj
for i, j ∈ {1, 2, . . . , n}, i 6= j, where sn−i+1 = sn−iui for i ∈
{1, 2, . . . , n− 1} and un = s1. Then

n∏
k=1

ukk =
n∏
k=1

u
∑r

i=0 c
(k)
i 2i

k =
n∏
k=1

r∏
i=0

u
c
(k)
i 2i

k =
r∏
i=0

( n∏
k=1

u
c
(k)
i
k

)2i
.

Denote ti =
∏n

k=1 u
c
(k)
i
k for i = 0, 1, . . . r. Because ui rpruj for i 6= j,

so from Lemma 2.2 we have ti ∈ Sqf H. Therefore a = t0t
2
1t

22

2 . . . t2
r

r ,

where k =
∑r

i=0 c
(k)
i 2i for k = 1, 2, . . . , n and c

(k)
i ∈ {0, 1}.

2s⇒ 5s [2], Proposition 3.4, (ii)⇒(v).

3s⇒ 6s Obvious.

(b) 4r⇒ 4’r Let e ∈ GprH be such that e | b. By assumption we have

b | dn, hence e | dn, because e | b. But e ∈ GprH, so from the fact that
e | dn we have e | d, thus e2 | d2. By assumption we have d2 | b, so
e2 | b.

5r⇒ 4r Let a = bc, where b ∈ H, c ∈ GprH such that a | cm for some
m ∈ N. By assumption we can b presented in the form b = de, where
d ∈ H, e ∈ GprH such that b | ek for some k ∈ N.

Since e | b, b | a and a | cm, then e | cm. But e ∈ GprH, so e | c
by definition. Then c = ef , where f ∈ H. By Lemma 2.1 we refer
that f ∈ GprH, and from Lemma 2.2 we have e rpr f . From equation
b = de we have be = de2. We get a = bef , where e2 | be and be | ek+1.

Now we will prove that be rpr f . From divisibilities d | be, be | ek+1 and
ek+1 | ck+1 we have d | ck+1 and f | c, c | ck+1, so f | ck+1. In other
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hand we have df | bef , bef | a and a | cl for some l ∈ N, so df | cl.
Hence since d | ck, f | cl, df | cl, then d rpr f . And since e rpr f , then
be rpr f .

5r⇒ 5’r Let d ∈ GprH be such that d | a. Since d | a and by

assumption a | cn, then d | cn. Because d ∈ GprH, so d | c.

(c) The proof comes from the fact that any radical generator is a square-
free element.

Recall that in a SR-monoid the concept of a square-free element coincides
with the concept of a radical generator, therefore it is enough to consider
square-free properties.

Proposition 4.2. Let H be a SR-monoid. Then

(a) the following implications hold:

0s

⇐ ⇑ ⇒

1s ⇐ 2s ⇒ 3s

⇓ ⇓
4s ⇐ 5s 6s

⇓ ⇓
4’s 5’s

(b) the following equivalences hold:

0r 1r 2r 3r 4r 4’r 5r 5’r 6r

m m m m m m m m m
0s 1s 2s 3s 4s 4’s 5s 5’s 6s

Proof. (a) Since H is a SR-monoid, so every implications from Proposition
4.1 (b) hold.

(b) Obvious.
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Since in pre-Schreier monoids, GCD-monoids and GCDs-monoids the SR
property holds, therefore in the following three Propositions it is enough to
consider square-free dependencies.

Proposition 4.3. Let H be a pre-Schreier monoid. Then

(a) the following implications and equivalences hold:

0s

⇐ ⇐

1s ⇔ 2s ⇒ 3s

⇓ ⇓ ⇓
4s ⇔ 5s 6s

⇓ ⇓
4’s 5’s

(b) if the condition 2s holds, then H be GCD-monoid.

Proof. (a) 1s⇒ 2s [4], Proposition 1, (b), (vi)⇒ (iv).

1s⇒ 4s Put b = s22s
3
3 . . . s

n
n and c = s1. From the fact that s1, s2, . . . , sn

are pairwise relatively prime results b rpr c from Lemma 2.3 (d). More-
over for d = s2s3 . . . sn we have d2 | b, b | dn. Because si rpr sj for
i, j ∈ {2, 3, . . . , n}, i 6= j, so from Lemma 2.3 (e) we have d ∈ Sqf H.

4s⇒ 5s Assume a = bc, where b ∈ H, c ∈ Sqf H such that b rpr c and
b = d2e, b | dm, where d ∈ Sqf H andm ∈ N. Then a = d2ec = (de)(cd).
Since d | b, b rpr c, then d rpr c, so cd ∈ Sqf H by Lemma 2.3 (d). We
get also that since b | dm, then bc | dmc, and because dmc | (cd)m, so
a | (cd)m.

The other implications hold from Proposition 4.1.

(b) [2], Reviewer’s remark, p. 865.
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Proposition 4.4. Let H be a GCD-monoid. Then the following implications
and equivalences hold:

0s

⇔ m ⇔

1s ⇔ 2s ⇔ 3s

⇓ ⇓ ⇓
4s ⇔ 5s 6s

⇓ ⇓
4’s 5’s

Proof. 1s⇔ 2s⇔ 3s [4], Proposition 1 (b).

0s⇒ 2s [2], Reviewer’s remark, p. 854.

The other implications and equivalences hold from Proposition 4.3.

Proposition 4.5. Let H be a GCDs-monoid. Then the condition 5’s holds.

Proof. Let a ∈ H and X = {d ∈ Sqf H; d | a}. From Lemma 2.5 there exists
LCM(X). Let c = LCM(X). By Lemma 2.6 we get that c ∈ Sqf H. Since
every element belonging to X divides a, the c | a. Hence a = bc for some
b ∈ H. Consider any d ∈ Sqf H such that d | a. But d ∈ X, hence d | c,
because c = LCM(X).

Note that in an atomic monoid the 0s property holds.

Proposition 4.6. Let H be an ACCP-monoid. Then

(a) the conditions 0s , 3s and 6s hold,

(b) the following implicatios and equivalences hold:

5’r 4’r

⇑ ⇑
0r ⇐ 1r ⇐ 2r ⇔ 3r ⇔ 6r ⇔ 5r ⇒ 4r

⇓ ⇓ ⇓ ⇓
1s 2s ⇒ 5s 4s

⇑
5’s
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Proof. (a) [4], Proposition 1 (c), (i), (iii).

(b) 5’s⇒ 2s Consider any element a ∈ H. We can presented element a in
the form a = b1c1, where b1 ∈ H, c1 ∈ Sqf H and for every d ∈ Sqf H,
if d | a, then d | c.

We can presented element b1 in the form b1 = b2c2, where b2 ∈ H,
c2 ∈ Sqf H and for every d ∈ Sqf H, if d | b1, then d | c2.

An element b2 we can presented in the form b2 = b3c3, where b3 ∈ H,
c3 ∈ Sqf H and for every d ∈ Sqf H, if d | b2, then d | c3.

Continuing, we get an ascending sequence of principal ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂ . . . .

Then by ACCP condition there exists m ∈ N such that

(bn) = (bn+1) = (bn+2) . . . .

In particular (bk) = (bk+1), so bk ∼ bk+1. Because bk = bk+1ck+1, hence
ck+1 ∈ H∗. we know that for any element d ∈ Sqf H, if d | bk, then
d | ck+1. But ck+1 ∈ H∗, hence since d | bk, then d ∈ H∗.

We have

a = b1c1 = b2c2c1 = · · · = bkckck−1 . . . c1 = ckck−1 . . . c1,

because bk ∈ H∗. We show that for every i = 2, 3, . . . k the divisibiity
ci | ci−1 holds. For i = 2 we have c2 | b1, because b1 = b2c2. Since c2 | b1,
then c2 | a. Then by the assumption c2 | c1. For i = 3, 4, . . . we know
that for every element bi−1 we can presented in the form bi−1 = bici,
hence ci | bi−1. We also know that bi−1 | bi−2. And hence ci | bi−2. By
the assumption we have for any element d ∈ Sqf H, if d | bi−2, then
d | ci−1, so since ci | bi−2, then ci | ci−1, because ci ∈ Sqf H.

6s⇒ 3s Consider any element a ∈ H. The element a can be presented
in the form a = b21c1, where b1 ∈ H, c1 ∈ Sqf H/GprH.

An element b1 can be presented in the form b1 = b22c2, where b2 ∈ H,
c2 ∈ Sqf H/GprH. Similarly, we can presented an element b2 in the
form b2 = b23c3, where b3 ∈ H, c3 ∈ Sqf H/GprH.
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By continuing this process, we obtain an ascending sequence of princi-
pal ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂

By ACCP condition there exists k ∈ N such that bk ∼ bk+1. And
because bk = b2k+1ck+1, hence bk+1, ck+1 ∈ H∗. Since bk ∼ bk+1 and
bk+1 ∈ H∗, then bk ∈ H∗.

Then

a = b21c1 = b2
2

2 c
2
2c1 = b2

3

3 c
22

3 c
2
2c1 = · · · = b2

k

k c
2k−1

k c2
k−2

k−1 . . . c
2
2c1 =

= s0s
2
1s

22

2 . . . s2
n

n ,

where s0 = c1, s1 = c2, s2 = c3, . . . , sn−1 = ck, sn = bk.

(c) 5r⇒ 2r

Consider any element a ∈ H. We can introduced the element a in the
form a = b1c1, where b1 ∈ H, c1 ∈ GprH and a | cn1

1 holds for some
n1 ∈ N.

An element b1 can be presented in the form b1 = b2c2, where b2 ∈ H,
c2 ∈ GprH and b1 | cn2

2 holds form some n2 ∈ N.

An element b2 can be presented in the form b2 = b3c3, where b3 ∈ H,
c3 ∈ GprH and b2 | cn3

3 holds for some n3 ∈ N.

Continuing our reasoning we get an increasing sequence of principal
ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂ .

By ACCP condition there exists n such that

(bn) = (bn+1) = (bn+2) = . . . .

In particular (bn) = (bn+1), so bn ∼ bn+1. And because bn = bn+1cn+1,
so cn+1 ∈ H∗. There is also divisibility bn | cmn+1

n+1 , hence bn ∈ H∗.

Then we get

a = b1c1 = b2c2c1 = b3c3c2c1 = · · · = bncncn−1 . . . c2c1 = s1s2 . . . sn,

where s1 = bncn, s2 = cn−1, s3 = cn−2, . . . , sn = c1.
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It remained to prove that for i = 1, 2, . . . , n − 1 the condition ci+1 | ci
holds. For i = 1 we have divisibilities c2 | b1, b1, b1 | a, a | cm1

1 , hence
c2 | c1, because c2 ∈ GprH. For i > 1 divisibilities ci+1 | bi, bi | bi−1,
bi−1 | cmi

i holds, and hence ci+1 | ci. Since ci+1 ∈ GprH, then ci+1 | ci.

6r⇒ 5r Consider any element a ∈ H. An element a ∈ H can be
presented in the form a = b21c1, where b1 ∈ H, c1 ∈ GprH.

An element b1c1 can be presented in the form b1c1 = b22c2, where b2 ∈ H,
c2 ∈ GprH. Similarly, we can presented an element b2c2 in the form
b2c2 = b23c3, where b3 ∈ H, c3 ∈ GprH.

By repeating the process, we obtain the following ascending sequence
of principal ideals

(b1c1) ⊂ (b2c2) ⊂ (b3c3) . . .

By ACCP condition there exists k ∈ N such that

(bkck) = (bk+1ck+1) = (bk+2ck+2) . . .

In particular (bkck) = (bk+1ck+1), so bkck ∼ bk+1ck+1. From the equa-
tion bkck = b2k+1ck+1 and from bkck ∼ bk+1ck+1 we get bk+1 ∈ H∗.

We have the following divisibility:

ck+1 | bkck, bkck | bk−1ck−1, . . . , b2c2 | b1c1, b1c1 | a.

Therefore, since a = b21c1, then a | (b1c1)
2. Since b1c1 = b22c2, then

b1c1 | (b2c2)
2. Generally for i = 2, 3, . . . , k we have bk−1ck−1 | (bkck)

2.
Hence a | (bkck)2

k
. Since bkck ∼ ck+1, then a | c2kk+1.

The other implications hold from Proposition 4.1.

5 Unique representation

In this section, we present the unique presentation of the factorization
and the conditions of existence of square-free and radical divisors.

Proposition 5.1. Let H be a monoid.
Consider any elements a, c ∈ H, b, d ∈ GprH, such that for any e ∈

GprH implications hold: if e | ab, then e | b and if e | cd, then e | d. If

ab ∼ cd,

then a ∼ c and b ∼ d.
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Proof. Assume ab ∼ cd. We see that b ∈ GprH and b | cd, so b | d by
assumption. Similarly, we justify divisibility d | b. Hence b ∼ d, and then
a ∼ c.

The uniques of 2r , 5r was proved in [2], Proposition 6.5 (a), (b).

The uniques of 1s was proved in [2], Proposition 6.6.

Proposition 5.2. Let H be a GCD-monoid.
(a) Consider any elements a, c ∈ H, b, d ∈ Sqf H, such that a rpr b,

c rpr d and for some elements e, f ∈ Sqf H and m,n ∈ N divisibilities e2 | a,
a | em and f 2 | c, c | fn hold. If

ab ∼ cd,

then a ∼ c, b ∼ d.

(b) Consider any elements a, c ∈ H, b, d ∈ Sqf H, such that a rpr b,
c rpr d and for any g ∈ Sqf H the implication holds: if g | a, then g2 | a. If

ab ∼ cd,

then a ∼ c, b ∼ d.

(c) Consider any elements a, c ∈ H and b, d ∈ Sqf H. If

a2b = c2d,

then a ∼ c and b ∼ d.

(d) Consider any elements s0, s1, . . . , sn ∈ Sqf H and t0, t1, . . . , tn ∈
Sqf H. If

s2
n

n s
2n−1

n−1 . . . s
2
1s0 = t2

n

n t
2n−1

n−1 . . . t
2
1t0,

then si ∼ ti for i = 0, 1, . . . , n.

Proof. (a) Assume ab ∼ cd. Put g = GCD(d, e). Since d ∈ Sqf H, then by
Lemma 2.1 we have g ∈ Sqf H, because g | d. Since g | e, then g2 | e2, and
hence g2 | a, because e2 | a. Since g2 | a and a | cd, so g2 | cd. Let us remind
g | d, then g2 | d2. Since g2 | cd, g2 | d2 and c rpr d, hence by Lemma we refer
g2 | GCD(cd, d2), so g2 | d. Because d ∈ Sqf H, so g ∈ H∗. Then d rpr e,
because g is their greatest common divisor. Therefore by Lemma 2.3 (c) we
refer d rpr em, and hence d rpr a, because a | em. Similarly, we justify that
b rpr c putting h = GCD(b, f) and we repeat the reasoning. Then by Lemma
2.3 (a) we have a ∼ c, b ∼ d.
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(b) Assume ab ∼ cd. Put g = GCD(a, d). Since d ∈ Sqf H, then by
Lemma 2.1 we have g ∈ Sqf H, because g | d. Since g | a, then g2 | a by
the assumption. Hence g2 | cd. Let us remind g | d, then g2 | d2. Since
g2 | cd, g2 | d2 and c rpr d, hence we refer g2 | GCD(cd, d2), so g2 | d. Because
d ∈ Sqf H, so g ∈ H∗. Then a rpr d, because g is their greatest common
divisor. Because d | ab, hence d | b. Similarly, we justify that b rpr c putting
h = GCD(b, c) and we repeat the reasoning. Then by Lemma 2.3 (a) we have
a ∼ c, b ∼ d.

(c), (d) The uniques of 6s , 2s was proved in [4], Proposition 2 (i),
(ii).

6 Some examples

Example 6.1. Let
H = N>k ∪ {0}.

H be a GCD-monoid. All conditions are met from 3.

Example 6.2. For the established k ∈ N, let H = Q>k ∪ {0}. A monoid H
does not meet all the conditions in 3.

Example 6.3. Let H = N2
0 with addition action. H be an ACCP-monoid. A

monoid H satisfies the conditions: 0s, 1s, 2s, 3s, 4s, 4’r, 5s, 5’r, 6s. H does
not meet the conditions: 0r, 1r, 2r, 3r, 4r, 4’s, 5r, 5’s, 6r.

Example 6.4. Let H be a monoid, not a group such that every element of H

be a square. In particular Q>0 and
〈 1

2n
| n ∈ N

〉
. The monoid H satisfies

the conditions: 4’s, 4’r, 5’s, 5’r, 6s, 6r. The others are not met.

Example 6.5. Consider a submonoid of free monoid

H = 〈x1, x2, . . . , y1, y2, · · · | yi = xpi+1y
q
i+1, i = 1, 2, . . . 〉

for any p, q ∈ N. H be a GCD-monoid, not ACCP-monoid. Consider the
special cases of the monoid H.

(1) Let
H = 〈x1, x2, . . . , y1, y2, · · · | yi = xi+1yi+1, i = 1, 2, . . . 〉.

All conditions are met from 3.
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(2) Let q = 2r. Then

H = 〈x1, x2, . . . , y1, y2, · · · | yi = xpi+1y
2r
i+1, i = 1, 2, . . . 〉.

The monoid H satisfies the conditions: 4s, 4’s, 5s, 5’s. The others are
not met.

(3) Let q = 2t+ 1. Then

H = 〈x1, x2, . . . , y1, y2, · · · | yi = xpi+1y
2t+1
i+1 , i = 1, 2, . . . , p 6= 1, t 6= 0〉.

The monoid H satisfies the conditions: 4s, 4’s, 5s, 5’s. The others are
not met.

Example 6.6. Let

H = 〈x1, x2, . . . , y1, y2, . . . , z1, z2, · · · | xi+1 = x2i yi, yi+1 = yizi, i = 1, 2, . . . 〉.

A monoid H does not satisfies 1s, 1r, 2s, 2r. Other conditions have not been
investigated.

7 Classifications of monoids with respect to

square-free and radical factorizations

In section 3 determined 18 properties of monoids:

0s, 0r, 1s, 1r, 2s, 2r, 3s, 3r, 4s, 4r, 4’s, 4’r, 5s, 5r, 5’s, 5’r, 6s, 6r.

We can treat these properties as propositional forms defined on the class
of monoids.

To simplify the reasoning, it is worth considering the following pairs:

0sr=(0s,0r), 1sr=(1s,1r), 2sr=(2s,2r), 3sr=(3s,3r), 4sr=(4s,4r), 5sr=(5s,5r),
6sr=(6s,6r).

For A= 0, 1, 2, 3, 4, 5, 6 as the logical value of the pair Asr we take the
sum of the logical values of the forms As and Ar:

v(Asr) = v(As) + v(Ar),
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where v be the logical value of the monoid property.

Note that there is an implication of Ar ⇒ As, so v(Asr) uniquely defines
a pair of values (v(As), v(Ar)).

In the tables below, we present the logical values of the entered sentence
form pairs.

v(0s) v(0r) v(0sr)

1 1 2
1 0 1
0 0 0

v(1s) v(1r) v(1sr)

1 1 2
1 0 1
0 0 0

. . .

v(6s) v(6r) v(6sr)

1 1 2
1 0 1
0 0 0

It seems that the implications of 4’r⇒ 4’s, 4’s⇒ 4’r, 5’r⇒ 5’s, 5’s⇒ 5’r
generally do not apply, so the value pair is not uniquely defined by the sum
of the values. It is very important in this situation to find counterexamples.

We will often use the following simple observation:

p ⇒ q is exactly where v(p) 6 v(q).

Lemma 7.1. For A, B ∈ {0, 1, . . . , 6} such that A 6= B, system of implica-
tions

Ar ⇒ Br

⇓ ⇓
As ⇒ Bs

is exactly where v(Asr) 6 v(Bsr).

We will determine all possible systems of logical values in the class of all
monoids considering the dependencies collected in the Proposition 4.1.

We will start by determining all possible values of logical properties of
square-free and radical factorization:

0s, 0r, 1s, 1r, 2s, 2r, 3s, 3r.

The above dependencies are presented in the diagram below.

2r ⇒ 1r

⇐ ⇓ ⇐
⇓ 3r ⇒ 0r

⇓ ⇓
2s ⇒ 1s ⇓

⇐ ⇓ ⇐
3s ⇒ 0s
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Note that by Lemma 7.1 the above implications apply exactly when

v(2sr) 6 v(1sr) 6 v(0sr)

v(2sr) 6 v(3sr) 6 v(0sr)

We print out all possible values v(1sr) and v(3sr) depending on v(0sr) and
v(2sr).

v(0sr) v(2sr) v(1sr) v(3sr)

2 2 2 2
2 1 2,1 2,1
2 0 2,1,0 2,1,0
1 1 1 1
1 0 1,0 1,0
0 0 0 0

Table 4.1: Possible values 0sr, 1sr, 2sr, 3sr

All possible relationships between properties

2s, 2r, 4s, 4r, 4’r, 5s, 5r, 5’r

shows the following diagram.

5’r 4’r

⇑ ⇑
2r ⇒ 5r ⇒ 4r

⇓ ⇓ ⇓
2s ⇒ 5s 4s

Let’s start with the relationship between 4sr and 4’r. Note that if v(4r) =
0 then v(4’r) can be any value, and if v(4r) = 1 then v(4’r) = 1. We present
this relationship in the table:

v(4sr) v(4’r)

2 1
1 1,0
0 1,0

Table 4.2: Possible values 4’r for the given value 4sr.

Let’s move on to the relationship between 5sr, 5’r and 4sr. Note that if
v(5r) = 0 then v(5’r) and v(4r) can be of any value, and if v(5r) = 1 then
v(5’r) = 1 and v(4r) = 1. We present these relationships in the table:
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v(5sr) v(5’r) v(4sr)

2 1 2
1 1,0 2,1,0
0 1,0 2,1,0

Table 4.3: Possible values 5’r, 4sr for the given value 5sr.

Note that the implications between 2s, 2r, 5s, 5r are exactly when v(2sr)
6 v(5sr) (Lemma 7.1), so we present these relationships in the table below:

v(2sr) v(5sr)

2 2
1 2,1
0 2,1,0

Table 4.4: Possible values 5sr for the given value 2sr.

Tables 4.2, 4.3, 4.4 can be combined into one table. Let L1 denote the
number of possible systems of values 4sr, 4’r, 5sr, 5’r for the given value of
2sr.

v(2sr) v(5sr) v(5’r) v(4sr) v(4’r) L1

2 2 1 2 1 1

1
2 1 2 1

1+2+8=11
1 1,0

2 1
1,0 1,0

0
2 1 2 1

1+4+16=21
1,0 1,0

2 1
1,0 1,0

Table 4.5: Possible values 5sr, 5’r, 4sr, 4’r for the given 2sr.

All possible relationships between properties

3s, 3r, 6s, 6r

shows the following diagram.

3r ⇒ 6r

⇓ ⇓
3s ⇒ 6s

From the Lemma 7.1 we know that the above implications apply exactly
when v(3sr) 6 v(6sr), so we present these dependencies in the table below.
Let L2 denote the number of possible systems of values 6sr for a given value
of 3sr.
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v(3sr) v(6sr) L2

2 2 1
1 2,1 2
0 2,1,0 3

Table 4.6: Possible values 6sr for the given value 3sr.

In Proposition 4.1 there are no 4’s and 5’s relationships. 4’s and 5’s can
take any value.

v(4’s) v(5’s)

1 1
1 0
0 1
0 0

Table 4.7: Possible values 4’s and 5’s.

Based on the tables 4.1, 4.5, 4.6, 4.7 we can now determine the number
of possible systems of values 1sr, 3sr, 4sr, 4’s, 4’r, 5sr, 5’s, 5’r, 6sr for a given
system of values 0sr, 2sr. Let us denote this number by L3.

v(0sr) v(2sr) [L1] v(1sr) v(3sr) [L2] L3

2 2 [1] 2 2 [1] 4
2 1 [11] 2,1 2 [1], 1 [2] 264
2 0 [21] 2,1,0 2 [1], 1 [2], 0 [3] 1512
1 1 [11] 1 1 [2] 88
1 0 [21] 1,0 1 [2], 0 [3] 840
0 0 [21] 0 0 [3] 252

Table 4.8: Numbers of possible systems values 1sr, 3sr, 4sr, 4’s, 4’r, 5sr, 5’s,
5’r, 6sr for a given system of values 0sr, 2sr.

All the values in the L3 column were multiplied by 4 because we included
the 4’s and 5’s properties, which are independent of the other values (Table
4.7). Summing up all the values of L3, we get 2960 of possible sets of values.

Recall that in an atomic monoid the condition 0s (Proposition ??) is
satisfied. Then v(0sr) can be either 2 or 1. Therefore, from table 4.8, dis-
card those monoids for which v(0sr) = 0 (last row). These dependencies are
presented in the table:
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v(0sr) v(2sr) v(1sr) v(3sr) L3

2 2 2 2 4
2 1 2,1 2,1 264
2 0 2,1,0 2,1,0 1512
1 1 1 1 88
1 0 1,0 1,0 840

Table 4.9: Numbers of possible systems of values 1sr, 3sr, 4sr, 4’s, 4’r, 5sr,
5’s, 5’r, 6sr for a given system of values 0sr, 2sr in atomic monoids.

Thus, all possible systems of values in an atomic monoid, there is 2708.

Similarly, we consider all possible systems of values for ACCP-monoids,
SR-monoids, pre-Schreier monoids, GCD-monoids, GCD s-monoids. The fi-
nal tables are presented below.

v(0sr) v(2sr) [L1] v(1sr) v(3sr) [L2] L3

2 2 [2] 2 2 [1] 4
2 1 [20] 2,1 1 [1] 80
2 0 [20] 2,1,0 1 [1] 120
1 1 [20] 1 1 [1] 40
1 0 [20] 1,0 1 [1] 80

Tabela 4.10: Numbers of possible systems of values 1sr, 3sr, 4sr, 4’s, 4’r,
5sr, 5’s, 5’r, 6sr for a given values 0sr, 2sr in ACCP-monoids.

All the values in L3 were multiplied by 2 because we included 4′s which
is independent of the other values. Summing up all the values of L3, we get
324 of possible ACCP-monoid systems.

In SR-monoids, pre-Schreier monoids, GCD-monoids, GCDs-monoids the
concept of a square-free element is equivalent to a radical generator. There-
fore, instead of Asr, we will consider As for A = 1, 2, 3, 4, 4 ’, 5, 5’, 6.
We will determine all possible logical values of dependencies collected in the
Proposition 4.2.

v(0s) v(2s) [L1] v(1s) v(3s) [L2] L3

1 1 [1] 1 1 [1] 1
1 0 [7] 1,0 1 [1], 0 [2] 42
0 0 [7] 0 0 [2] 14

Table 4.11: Numbers of possible systems of values 1s, 3s, 4s, 4’s, 5s, 5’s, 6s
for a given system of values 0s, 2s in SR-monoids.
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Summing up all the values of L3, we get 57 of possible systems of values
in a SR-monoids.

v(0s) v(2s) [L1] v(1s) v(3s) [L2] L3

1 1 [1] 1 1 [1] 1
1 0 [5] 0 1 [1], 0 [2] 15
0 0 [5] 0 0 [2] 10

Table 4.12: Number of possible systems of values 0s, 3s, 4s, 4’s, 5s, 5’s, 6s
for a given system of values 1s, 2s in pre-Schreier monoids.

Summing up all the values of L3, we get 26 of possible systems of values
in a pre-Schreier monoids.

v(0s) v(2s) [L1] v(1s) v(3s) [L2] L3

1 1 [1] 1 1 [1] 1
0 0 [5] 0 0 [2] 10

Table 4.13: Number of possible systems of values 4s, 4’s, 5s, 5’s, 6s for a
given system of values 0s, 1s, 2s, 3s in a GCD-monoids.

Summing up all the values of L3, we get 11 of possible systems of values
in a GCD-monoids.

We know that any GCDs-monoid satisfies the 5′s condition (Proposition
4.5). Therefore, the same relationships apply as for the GCD-monoids, but
v(5’s) = 1 should be included.

v(0s) v(2s) [L1] v(1s) v(3s) [L2] L3

1 1 [1] 1 1 [1] 1
0 0 [3] 0 0 [2] 6

Table 4.14: Numbers of possible systems of values 4s, 4’s, 5s, 5’s, 6s for a
given system of values 0s, 1s, 2s, 3s.

Summing up all the values of L3, we get 7 of possible systems of values
in a GCDs-monoids.
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