Analytic and Algebraic Geometry 2

Łódź University Press 2017, 79–84 DOI: http://dx.doi.org/10.18778/8088-922-4.13

A NOTE ON SQUARE-FREE FACTORIZATIONS

PIOTR JĘDRZEJEWICZ, ŁUKASZ MATYSIAK, AND JANUSZ ZIELIŃSKI

Abstract. We analyze properties of various square-free factorizations in greatest common divisor domains (GCD-domains) and domains satisfying the ascending chain condition for principal ideals (ACCP-domains).

1. Introduction

Throughout this article by a ring we mean a commutative ring with unity. By a domain we mean a ring without zero divisors. By *R[∗]* we denote the set of all invertible elements of a ring *R*. Given elements $a, b \in R$, we write $a \sim b$ if a and *b* are associated, and *a | b* if *b* is divisible by *a*. Furthermore, we write *a* rpr *b* if *a* and *b* are relatively prime, that is, have no common non-invertible divisors. If *R* is a ring, then by Sqf *R* we denote the set of all square-free elements of *R*, where an element $a \in R$ is called square-free if it can not be presented in the form $a = b^2c$ with $b \in R \setminus R^*, c \in R$.

In [4] we discuss many factorial properties of subrings, in particular involving square-free elements. The aim of this paper is to collect various ways to present an element as a product of square-free elements and to study the existence and uniqueness questions in larger classes than the class of unique factorization domains. In Proposition 1 we obtain the equivalence of factorizations (ii) – (vii) for GCD-domains. We also prove the existence of factorizations $(i) - (iii)$ in Proposition 1 for ACCP-domains, but their uniqueness we obtain in Proposition 2 for GCD-domains. Recall that a domain *R* is called a GCD-domain if the intersection of any two principal ideals is a principal ideal. Recall also that a domain *R* is called an ACCP-domain if it satisfies the ascending chain condition for principal ideals.

²⁰¹⁰ *Mathematics Subject Classification.* Primary 13F15, Secondary 13F20.

Key words and phrases. Square-free element, factorization, pre-Schreier domain, GCDdomain, ACCP-domain.

We refer to Clark's survey article [1] for more information about GCD-domains and ACCP-domains.

It turns out that some preparatory properties (Lemma 2) hold in a larger class than GCD-domains, namely pre-Schreier domains. A domain *R* is called pre-Schreier if every non-zero element $a \in R$ is primal, that is, for every $b, c \in R$ such that $a \mid bc$ there exist $a_1, a_2 \in R$ such that $a = a_1 a_2, a_1 \mid b$ and $a_2 \mid c$. Integrally closed pre-Schreier domains are called Schreier domains. The notion of Schreier domain was introduced by Cohn in [2]. The notion of pre-Schreier domain was introduced by Zafrullah in [6], but this property had featured already in [2], as well as in [3] and [5]. The reason why we consider pre-Schreier domains in Lemma 2 is that we were looking for a minimal condition under which a product of pairwise relatively prime square-free elements is square-free. For further information on pre-Schreier domains we refer the reader to [6].

2. Preliminary lemmas

Note the following easy lemma.

Lemma 1. Let R be a ring. If $a \in \text{Sqf } R$ and $a = b_1b_2...b_n$, then $b_1, b_2,...$ $b_n \in \text{Sqf } R$ *and* b_i rpr b_j *for* $i \neq j$ *.*

In the next lemma we obtain the properties we will use in the proofs of Propositions 1 b) and 2 (i). Recall that every GCD-domain is pre-Schreier ([2], Theorem 2.4).

Lemma 2. *Let R be a pre-Schreier domain.*

a) *Let* $a, b, c \in R$ *,* $a \neq 0$ *. If* $a \mid bc$ *and* a rpr b *, then* $a \mid c$ *.*

b) Let $a, b, c, d \in R$. If $ab = cd$, a rpr c and b rpr d, then $a \sim d$ and $b \sim c$.

c) Let $a, b, c \in R$. If $ab = c^2$ and arprb, then there exist $c_1, c_2 \in R$ such that $a \sim c_1^2$, $b \sim c_2^2$ *and* $c = c_1 c_2$ *.*

d) Let $a_1, \ldots, a_n, b \in R$. If a_i rpr b for $i = 1, \ldots, n$, then $a_1 \ldots a_n$ rpr b.

e) Let $a_1, \ldots, a_n \in R$. If $a_1, \ldots, a_n \in \mathrm{Sqf} R$ and a_i rpr a_j for all $i \neq j$, then $a_1 \ldots a_n \in \text{Sqf } R$ *.*

Proof. **a**) If *a | bc*, then $a = a_1a_2$ for some $a_1, a_2 \in R \setminus \{0\}$ such that $a_1 \mid b$ and $a_2 \mid c$. If, moreover, *a* rpr *b*, then $a_1 \in R^*$. Hence, $a \sim a_2$, so $a \mid c$.

b) Assume that $ab = cd$, a rpr c and b rpr d . If $a = 0$ and R is not a field, then $c \in R^*$, so $d = 0$ and then $b \in R^*$. Now, let $a, d \neq 0$.

Since $a \mid cd$ and a rpr c , we have $a \mid d$ by a). Similarly, since $d \mid ab$ and d rpr b , we obtain *d* | *a*. Hence, $a \sim d$, and then $b \sim c$.

c) Let $ab = c^2$ and a rpr *b*. Since $c \mid ab$, there exist $c_1, c_2 \in R \setminus \{0\}$ such that $c_1 \mid a$, $c_2 \mid b$ and $c = c_1 c_2$. Hence, $a = c_1 d$ and $b = c_2 e$ for some $d, e \in R$, and we obtain $de = c_1c_2$. We have d rpr c_2 , because $d \mid a$ and $c_2 \mid b$, analogously e rpr c_1 , so $d \sim c_1$ and $e \sim c_2$, by b). Finally, $a \sim c_1^2$, $b \sim c_2^2$.

d) Induction. Let a_i rpr *b* for $i = 1, \ldots, n+1$. Put $a = a_1 \ldots a_n$. Assume that a rpr *b*. Let $c \in R \setminus \{0\}$ be a common divisor of aa_{n+1} and *b*. Since $c \mid aa_{n+1}$, there exist $c_1, c_2 \in R \setminus \{0\}$ such that $c_1 | a, c_2 | a_{n+1}$ and $c = c_1 c_2$. We see that $c_1, c_2 | b$, so $c_1, c_2 \in R^*$, and then $c \in R^*$.

e) Induction. Take $a_1, \ldots, a_{n+1} \in \text{Sqf } R$ such that a_i rpr a_j for $i \neq j$. Put $a =$ $a_1 \ldots a_n$. Assume that $a \in \text{Sqf } R$. Let $aa_{n+1} = b^2c$ for some $b, c \in R \setminus \{0\}$.

Since $c \mid aa_{n+1}$, there exist $c_1, c_2 \in R \setminus \{0\}$ such that $c = c_1c_2, c_1 \mid a$ and $c_2 \mid a_{n+1}$, so $a = c_1 d$ and $a_{n+1} = c_2 e$, where $d, e \in R$. We obtain $de = b^2$. By d) we have *a* rpr a_{n+1} , so *d* rpr *e*. And then by c), there exist $b_1, b_2 \in R$ such that $d \sim b_1^2$, $e \sim b_2^2$ and $b = b_1b_2$. Since $a, a_{n+1} \in \text{Sqf } R$, we infer $b_1, b_2 \in R^*$, so $b \in R^*$ \Box

3. Square-free factorizations

In Proposition 1 below we collect possible presentations of an element as a product of square-free elements or their powers. We distinct presentations (ii) and (iii), presentations (iv) and (v), and presentations (vi) and (vii), because (ii), (iv) and (vi) are of a simpler form, but in (iii), (v) and (vii) the uniqueness will be more natural (in Proposition 2).

Proposition 1. Let R be a ring. Given a non-zero element $a \in R \setminus R^*$, consider *the following conditions:*

(i) *there exist* $b \in R$ *and* $c \in \text{Sqf } R$ *such that* $a = b^2c$ *,*

(ii) there exist $n \ge 0$ and $s_0, s_1, \ldots, s_n \in \text{Sqf } R$ such that $a = s_n^{2^n} s_{n-1}^{2^{n-1}} \ldots s_1^2 s_0$,

(iii) there exist $n \geq 1$, $s_1, s_2, \ldots, s_n \in (\text{Sqf } R) \setminus R^*$, $k_1 < k_2 < \ldots < k_n$, $k_1 \geq 0$, *and* $c \in R^*$ *such that* $a = cs_n^{2^{k_n}} s_{n-1}^{2^{k_{n-1}}} \dots s_2^{2^{k_2}} s_1^{2^{k_1}}$,

 (iv) *there exist* $n \geq 1$ *and* $s_1, s_2, \ldots, s_n \in \text{Sqf } R$ *such that* $s_i | s_{i+1}$ *for* $i =$ $1, \ldots, n-1, \text{ and } a = s_1 s_2 \ldots s_n,$

(v) there exist $n \geq 1$, $s_1, s_2, \ldots, s_n \in (\text{Sqf } R) \setminus R^*$, $k_1, k_2, \ldots, k_n \geq 1$, and $c \in R^*$ such that $s_i | s_{i+1}$ and $s_i \nsim s_{i+1}$ for $i = 1, ..., n-1$, and $a = cs_1^{k_1} s_2^{k_2} ... s_n^{k_n}$,

(vi) *there exist* $n \geq 1$ *and* $s_1, s_2, \ldots, s_n \in \text{Sqf } R$ *such that* s_i rpr s_j *for* $i \neq j$ *, and* $a = s_1 s_2^2 s_3^3 \dots s_n^n,$

(vii) there exist $n \geq 1$, $s_1, s_2, \ldots, s_n \in (\operatorname{Sqf} R) \setminus R^*$, $k_1 < k_2 < \ldots < k_n$, $k_1 \geq 1$, and $c \in R^*$ such that s_i rpr s_j for $i \neq j$, and $a = cs_1^{k_1} s_2^{k_2} \dots s_n^{k_n}$.

a) *In every ring R the following holds:*

 $(ii) \Leftarrow (ii) \Leftrightarrow (iii)$, $(iv) \Leftrightarrow (v) \Rightarrow (vi) \Leftrightarrow (vii)$.

b) *If R is a GCD-domain, then all conditions* (ii) *–* (vii) *are equivalent.*

- **c)** *If R is an ACCP-domain, then conditions* (i) *–* (iii) *hold.*
- **d)** *If R is a UFD, then all conditions* (i) *–* (vii) *hold.*

Proof. **a**) Implication (i) \Leftarrow (ii) and equivalencies (ii) \Leftrightarrow (iii), (iv) \Leftrightarrow (v), (vi) \Leftrightarrow (vii) are obvious, so it is enough to prove implication (iv) \Rightarrow (vi).

Assume that $a = s_1 s_2 \dots s_n$, where $s_1, s_2, \dots, s_n \in \text{Sqf } R$ and $s_i | s_{i+1}$ for $i = 1, \ldots, n - 1$. Let $s_{i+1} = s_i t_{i+1}$, where $t_{i+1} \in R$, for $i = 1, \ldots, n - 1$. Put also $t_1 = s_1$. Then $s_i = t_1 t_2 \ldots t_i$ for each *i*. Since $s_n \in \text{Sqf } R$, by Lemma 1 we obtain that $t_1, t_2, \ldots, t_n \in \text{Sqf } R$ and t_i rpr t_j for $i \neq j$. Moreover, we have $s_1 s_2 \ldots s_n = t_1^n t_2^{n-1} \ldots t_n.$

b) Let *R* be a GCD-domain.

(vi) \Rightarrow (iv) Assume that $a = s_1 s_2^2 s_3^3 \dots s_n^n$, where $s_1, s_2, \dots, s_n \in S$ and s_i rpr s_j for $i \neq j$. We see that

$$
s_1 s_2^2 s_3^3 \dots s_n^n = s_n (s_n s_{n-1}) (s_n s_{n-1} s_{n-2}) \dots (s_n s_{n-1} \dots s_2) (s_n s_{n-1} \dots s_2 s_1).
$$

Since *R* is a GCD-domain, $s_n s_{n-1} \ldots s_i \in \text{Sqf } R$ for each *i* by Lemma 2 e).

 $(vi) \Rightarrow (ii)$ Let $a = s_1 s_2^2 s_3^3 \dots s_n^n$, where $s_1, s_2, \dots, s_n \in S$ of R, and s_i rpr s_j for $i \neq j$. For every $k \in \{1, 2, ..., n\}$ put $k = \sum_{i=0}^{r} c_i^{(k)} 2^i$, where $c_i^{(k)} \in \{0, 1\}$. Then

$$
a = \prod_{k=1}^{n} s_k^k = \prod_{k=1}^{n} s_k^{\sum_{i=0}^{r} c_i^{(k)} 2^i} = \prod_{k=1}^{n} \prod_{i=0}^{r} s_k^{c_i^{(k)} 2^i} = \prod_{i=0}^{r} \left(\prod_{k=1}^{n} s_k^{c_i^{(k)}} \right)^{2^i},
$$

where $\prod_{k=1}^{n} s_i^{c_i^{(k)}} \in \text{Sqf } R$ for each *i* by Lemma 2 e).

(ii) ⇒ (vi) Let $a = s_n^{2^n} s_{n-1}^{2^{n-1}} \dots s_1^2 s_0$, where $s_0, s_1, \dots, s_n \in \text{Sqf } R$. For every $k \in \{1, 2, ..., 2^{n+1} - 1\}$ put $k = \sum_{i=0}^{n} c_i^{(k)} 2^i$, where $c_i^{(k)} \in \{0, 1\}$. Let $t'_k = \text{gcd}(s_i)$: $c_i^{(k)} = 1$, $t''_k = \text{lcm}(s_i : c_i^{(k)} = 0)$ and $t'_k = \text{gcd}(t'_k, t''_k) \cdot t_k$, where $t_k \in R$ (by [2], Theorem 2.1, in a GCD-domain least common multiples exist). Then *t^k* is the greatest among these common divisors of all s_i such that $c_i^{(k)} = 1$, which are relatively prime to all s_i such that $c_i^{(k)} = 0$. In particular, $t_k | s_i$ for every k, i such that $c_i^{(k)} = 1$, and t_k rpr s_i for every k, i such that $c_i^{(k)} = 0$. In each case, $gcd(s_i, t_k) = t_k^{c_i^{(k)}}$. Moreover, t_k rpr t_l for every $k \neq l$.

Since $s_i \mid t_1 t_2 \ldots t_{2^{n+1}-1}$, we obtain

$$
s_i = \gcd(s_i, \prod_{k=1}^{2^{n+1}-1} t_k) = \prod_{k=1}^{2^{n+1}-1} \gcd(s_i, t_k) = \prod_{k=1}^{2^{n+1}-1} t_k^{c_k^{(k)}},
$$

so

$$
\prod_{i=0}^{n} (s_i)^{2^i} = \prod_{i=0}^{n} \prod_{k=1}^{2^{n+1}-1} (t_k^{c_k^{(k)}})^{2^i} = \prod_{k=1}^{2^{n+1}-1} \prod_{i=0}^{n} t_k^{c_i^{(k)} 2^i} = \prod_{k=1}^{2^{n+1}-1} t_k^{2^{n}} = \prod_{k=1}^{2^{n+1}-1} t_k^{k}.
$$

Moreover, $t_k \in \text{Sqf } R$, because for $k \in \{1, 2, \ldots, 2^{n+1} - 1\}$ there exists *i* such that $c_i^{(k)} = 1$, and then $t_k | s_i$.

c) Let *R* be an ACCP-domain. In this proof we follow the idea of the second proof of Proposition 9 from [1], p. 7, 8.

(i) If $a \notin \text{Sqf } R$, then $a = b_1^2 c_1$, where $b_1 \in R \setminus R^*$, $c_1 \in R$. If $c_1 \notin \text{Sqf } R$, then $c_1 = b_2^2 c_2$, where $b_2 \in R \setminus R^*$, $c_2 \in R$. Repeating this process, we obtain a strongly ascending chain of principal ideals $Ra \subsetneq Re_1 \subsetneq Re_2 \subsetneq \ldots$, so for some k we will have $c_{k-1} = b_k^2 c_k$, $b_k \in R \setminus R^*$, and $c_k \in \operatorname{Sqf} R$. Then $a = (b_1 \dots b_k)^2 c_k$.

(iii) If $a \notin \text{Sqf } R$, then by (i) there exist $a_1 \in R \setminus R^*$ and $s_0 \in \text{Sqf } R$ such that $a = a_1^2 s_0$. If $a_1 \notin S$ of *R*, then again, by (i) there exist $a_2 \in R \setminus R^*$ and $s_1 \in S$ of *R* such that $a_1 = a_2^2 s_1$. Repeating this process, we obtain a strongly ascending chain of principal ideals $Ra \subsetneq Ra_1 \subsetneq Ra_2 \subsetneq \ldots$, so for some *k* we will have $a_{k-1} = a_k^2 s_{k-1}$, $a_k \in (\text{Sqf } R) \setminus R^*, s_{k-1} \in \text{Sqf } R.$ Putting $s_k = a_k$ we obtain:

$$
a = a_1^2 s_0 = a_2^{2^2} s_1^2 s_0 = \ldots = s_n^{2^n} \ldots s_2^{2^2} s_1^2 s_0.
$$

d) This is a standard fact following from the irreducible decomposition.

4. The uniqueness of factorizations

The following proposition concerns the uniqueness of square-free decompositions from Proposition 1. In (i) – (iii) we assume that *R* is a GCD-domain, in (iv) – (vii) *R* is a UFD.

Proposition 2. (i) Let $b, d \in R$ and $c, e \in \text{Sqf } R$. If

$$
b^2c = d^2e,
$$

then $b \sim d$ *and* $c \sim e$ *.*

(ii) *Let* $s_0, s_1, \ldots, s_n \in \text{Sqf } R$ *and* $t_0, t_1, \ldots, t_m \in \text{Sqf } R$, $n \leq m$. If

$$
s_n^{2^n} s_{n-1}^{2^{n-1}} \dots s_1^2 s_0 = t_m^{2^m} t_{m-1}^{2^{m-1}} \dots t_1^2 t_0,
$$

then $s_i \sim t_i$ for $i = 0, \ldots, n$ and, if $m > n$, then $t_i \in R^*$ for $i = n + 1, \ldots, m$.

(iii) Let $s_1, s_2, ..., s_n \in (\text{Sqf } R) \setminus R^*, t_1, t_2, ..., t_m \in (\text{Sqf } R) \setminus R^*, k_1 < k_2 < ... <$ $k_n, l_1 < l_2 < \ldots < l_m$ and $c, d \in R^*$. If

$$
cs_n^{2^{k_n}} s_{n-1}^{2^{k_{n-1}}}\dots s_2^{2^{k_2}} s_1^{2^{k_1}} = dt_m^{2^{l_m}} t_{m-1}^{2^{l_{m-1}}} \dots t_2^{2^{l_2}} t_1^{2^{l_1}},
$$

then $n = m$, $s_i \sim t_i$ *and* $k_i = l_i$ *for* $i = 1, \ldots, n$ *.*

(iv) Let $s_1, s_2, \ldots, s_n \in \text{Sqf } R, t_1, t_2, \ldots, t_m \in \text{Sqf } R, n \leq m, s_i | s_{i+1} \text{ for } i =$ $1, \ldots, n-1, \text{ and } t_i \mid t_{i+1} \text{ for } i = 1, \ldots, m-1. \text{ If }$

$$
s_1s_2\ldots s_n=t_1t_2\ldots t_m,
$$

then $s_i \sim t_{i+m-n}$ for $i = 1, ..., n$ and, if $m > n$, then $t_i \in R^*$ for $i = 1, ..., m-n$. (v) Let $s_1, s_2, ..., s_n \in (\text{Sqf } R) \setminus R^*, t_1, t_2, ..., t_m \in (\text{Sqf } R) \setminus R^*, k_1, k_2, ..., k_n$ $\geq 1, l_1, l_2, \ldots, l_m \geq 1, c, d \in \mathbb{R}^*, s_i | s_{i+1} \text{ and } s_i \nsim s_{i+1} \text{ for } i = 1, \ldots, n-1,$ $t_i | t_{i+1}$ *and* $t_i \nsim t_{i+1}$ *for* $i = 1, \ldots, m-1$ *. If*

$$
cs_1^{k_1} s_2^{k_2} \dots s_n^{k_n} = dt_1^{l_1} t_2^{l_2} \dots t_m^{l_m},
$$

then $n = m$, $s_i \sim t_i$ *and* $k_i = l_i$ *for* $i = 1, ..., n$.

(vi) Let $s_1, s_2, \ldots, s_n \in \text{Sqf } R, t_1, t_2, \ldots, t_m \in \text{Sqf } R, n \leq m$, s_i rpr s_j for $i \neq j$ *and* t_i rpr t_j *for* $i \neq j$ *. If*

 $s_1 s_2^2 s_3^3 \dots s_n^n = t_1 t_2^2 t_3^3 \dots t_m^n$

then $s_i \sim t_i$ for $i = 1, ..., n$ and, if $m > n$, then $t_i \in R^*$ for $i = n + 1, ..., m$.

(vii) Let $s_1, s_2, \ldots, s_n \in (\operatorname{Sqf} R) \setminus R^*, t_1, t_2, \ldots, t_m \in (\operatorname{Sqf} R) \setminus R^*, 1 \leq k_1 < k_2$ $\ldots < k_n, \ 1 \leqslant l_1 < l_2 < \ldots < l_m, \ c, d \in R^*, \ s_i \text{ rpr } s_j \ \textit{for} \ i \neq j, \ \textit{and} \ t_i \text{ rpr } t_j \ \textit{for}$ $i \neq j$ *. If*

$$
cs_1^{k_1} s_2^{k_2} \dots s_n^{k_n} = dt_1^{l_1} t_2^{l_2} \dots t_m^{l_m},
$$

then $n = m$, $s_i \sim t_i$ *and* $k_i = l_i$ *for* $i = 1, \ldots, n$.

Proof. (i) Assume that $b^2c = d^2e$. Put $f = \gcd(b, d)$, $g = \gcd(c, e)$, $b = fb_0$, $d = fd_0$, $c = gc_0$, and $e = ge_0$, where $b_0, c_0, d_0, e_0 \in R$. We obtain $b_0^2c_0 = d_0^2e_0$, $gcd(c_0, e_0) = 1$ and $gcd(b_0, d_0) = 1$, so also $gcd(b_0^2, d_0^2) = 1$. By Lemma 2 b), we infer $b_0^2 \sim e_0$ and $c_0 \sim d_0^2$, but $c_0, e_0 \in \text{Sqf } R$ by Lemma 1, so $b_0, d_0 \in R^*$, and then $c_0, e_0 \in R^*$.

Statements (ii), (iii) follow from (i).

Statements (iv) – (vii) are straightforward using the irreducible decomposition. \Box

Acknowledgements

The authors would like to thank the referee for helpful remarks.

REFERENCES

- [1] P.L. Clark, *Factorizations in integral domains*, math.uga.edu/~pete/factorization2010.pdf.
- [2] P.M. Cohn, *Bezout rings and their subrings*, Proc. Camb. Phil. Soc. 64 (1968), 251–264.
- [3] W. Dicks, E.D. Sontag, *Sylvester domains*, J. Pure Appl. Algebra 13 (1978), 243–275.
- [4] P. Jędrzejewicz, Ł. Matysiak, J. Zieliński, *On some factorial properties of subrings*, to appear in Univ. Iagel. Acta Math., arXiv:1606.06592.
- [5] S. McAdam, D.E. Rush, *Schreier rings*, Bull. London Math. Soc. 10 (1978), 77–80.
- [6] M. Zafrullah, *On a property of pre-Schreier domains*, Comm. Algebra 15 (1987), 1895–1920.

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toruń, Poland

E-mail address, Piotr Jędrzejewicz: pjedrzej@mat.uni.torun.pl

E-mail address, Łukasz Matysiak: lmatysiak@mat.uni.torun.pl

E-mail address, Janusz Zieliński: ubukrool@mat.uni.torun.pl