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Abstract

We discuss various square-free and radical factorizations and ex-
istence of some divisors in commutative cancellative monoids in the
context of: atomicity, ascending chain condition for principal ideals,
a pre-Schreier property, a greatest common divisor property and a
greatest common divisor for sets property. We also discuss the ana-
logues of Jacobian conditions and their relationship to square-free and
radical factorizations.

1 Introduction

Let N={1,2,...} and Ny = {0, 1,2,... }.
Throughout this paper by a monoid we mean a commutative cancellative

monoid.

Let H be a monoid. We denote by H* the group of all invertible elements
of H.

Ifa, b € H arerelatively primes in H, i.e. do not have a common invertible
divisor of H, then we write arprb. Therefore, if M be a submonoid of H
and elements a, b € M are relatively primes in M, then we write arpr,, b.

Keywords: monoid, factorization, square-free element, radical generator, atom, Jacobian
conjecture.
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If a, b € H satysfying the condition a = ub, where u € H*, then we
write a ~ b. Therefore, if M be a submonoid of H and elements a, b € M
satysfying a = ub, where u € H*, then we write a ~; b.

The set of all irreducible elements (atoms) of H will be denoted by Irr H.
Recall that an element a € H is called square-free if it cannot be presented
in the form a = bc, where b, c € H and b ¢ H*. The set of all square-free
elements of H we will denote by Sqf H.

In Theorem we present a full characterization of submonoids M of
the factorial monoid H satisfying the condition

(1) Sqf M C Sof H

assuming M* = H*.

The equivalence of (1) and
(2) for every a € H, b€ Sqf H, if a*bh € M, then a, b€ M

in [4] has been extended to the equivalence of 8 conditions. Two of these
conditions represent a closure with respect to the 1s and 3s factorization
(See section ), while the closure with respect to 3s was obtained at an
earlier stage of the research and published in [2].

In addition, we received a full description of such submonoids (of factorial
monoid) satisfying the condition (1). They are (with an accuracy to the in-
vertible elements) free submonoids generated by any set of pairs of relatively
primes non-invertible square-free elements.

It also turned out (Theorem that the condition
(3) Irr M C Sqf H
is equivalent to the conjunction of (1) and
(4) for every a, b € M, if arpr,, b, then arpry b.

We have a transparent answer to the question of when the condition (1)
be equivalent to the condition (3) (See Theorem [8.1).

A very important step in the conducted research was finding a factorial
condition (Theorem implicating the condition (3):

(5) for every a € H, b € Sqf H, if a*b € M, then a, ab € M.



A natural question arose, is it a necessary condition. The answer is neg-
ative — a counterexample was found (Example . The factorial condition
to (3) is interesting, five equivalent conditions were obtained (Theorem [9.3)),
including closure with respect to the factorization of 2s (See section .

Conditions (1) and (3) are related to the assumption found in the famous
Jacobian conjecture.

Congecture 1.1. Let k be a field of characteristic 0. For every polynomials
f17 f27 ) fn E kl:xlj"xn] Withn > 17 if

jac(fi, fo, -, fn) € K\ {0},

then
klfr, ..o fol = Kz, ..o 2]

Recall a generalization of the Jacobian conjecture formulated in [4].

Congecture 1.2. Let k be a field characteristic 0. For every polynomials fi,
fo, ooy fr €k[xy, ... x,] withn > 1and r € {2,...,n}, if

ged(jacft 20 1< gy < - < i <m) € K\ {0},

Tj1 T gL

then
E[f1,..., f-] is algebraically closed in k[z1, ..., x,].

Under the assumption that fi, fo, ..., f. are algebraically independent
over k, the generalized Jacobian condition (assumption of Conjecture is
equivalent to any of the following ones ([4]):

(6) every irreducible of k[fy,..., f.] is square-free in k[zy,. .., z,],

(7) every square-free of k[fi,..., f.] is square-free in klxy, ..., z,].

Conditions (1) and (3) are a generalization of conditions (6) and (7)
(because (1), (3) are monoid-version) and therefore we call them the analogs
of the Jacobian conditions.

A side effect of the presented approach was a natural question about
general relationships between square-free factorizations in different classes of
monoids. Of course, these factorizations for rings of polynomials are com-
monly known, and it is clear that their existence and uniqueness occur in
domains with uniqueness of distribution, so e.g. certain properties hold in
GCD-domains. However, these relationships have not been studied so far. In



this paper we consider pre-Schreier monoids, GCD-monoids, GCDs-monoids,
ACCP-monoids, atomic monoids.

Recall that a monoid is called GCD-monoid, if for any two elements there
exists a greatest common divisor. A monoid H is called GCDs-monoid, if
there exists greatest common divisor for any subset of H. A monoid H is
called a pre-Schreier monoid, if any element a € H is primal, i.e. for any b,
¢ € H such that a | be there exist a;, ag € H such that a = ajag, a; | b and
as | ¢. A monoid H is called atomic, if every non-invertible element a € H
be a finite product of irreducibles (atoms). A monoid H is factorial, if each
non-invertible element can be written as a product of irreducible elements
and this representation is unique. A monoid H is called ACCP-monoid if
any ascending sequence principal ideals of H stabilizes. Recall that every
factorial monoid is ACCP-monoid, and ACCP-monoid is atomic ([8]). And
recall that every factorial monoid is GCDs-monoid, then GCD-monoid. And
GCD-monoid is pre-Schreier ([8]). Since every pre-Schreier is AP-monoid (in
such monoid an irreducible element (atom) is prime), then every atomic and
AP-monoid is factorial.

In section [b| we examine the dependencies between square-free factoriza-
tions, conditions of existence of certain square-free divisors, and between
square-free factorizations and conditions of existence of certain square-free
divisors. The conditions for the existence of certain square-free divisors re-
sult from the appropriate factorization, and the condition for the existence of
a square-free divisor in a square plays an important role in reasoning about
the inclusions (1) and (3).

In this context, the concept of a radical generator is very important intro-
duced by A. Reinhart in 2012 in [6]. The element of monoid is called radical
if the principal ideal is generated by this element be a radical ideal. The set
of all radical generators of a monoid H will be denoted by Gpr H. Reinhart’s
explores the properties of radically factorial monoids, i.e. such that each el-
ement is a product of radical generators. He does not consider various types
of radical factorization, nor relationships with square-free factorization. Let
us add that the property of the radical generator (although the author does
not use this name) appeared in the work of G. Angermiiller published in 2017
in the Grauert-Remmert normality criterion ([I], Proposition 31).

The radical generator is square-free, so radical factorizations are square-
free factorizations. Therefore, in the section [o| we also study general relation-
ships between radical factorizations, conditions of existence of certain radical
divisors, as well as between factorizations and conditions of existence of some
divisors (square-free or radical).



In sections [4] and [5| we present the latest results, which include the rela-
tionships between 8 factorization and 16 conditions for the existence of the
divisor.

2 Auxiliary statements

In this section we present lemmas that we will need later in this paper.

Lemma 2.1. Let H be a monoid.

(a) Leta e SqfH andbe H. Ifb|a thenbe Sqf H.

(b) Letaec GprH andbe H. Ifb|a then b € Gpr H.

Proof. (a) Suppose b ¢ Sqf H. Then there exists d € H \ H* such that d* | b.
Hence d? | a. A contradiction.

(b) Let @ € GprH and b | a. Let ¢ € H and b | ¢" for some n € N. By
assumption we have a = bd, where d € H. Then a | ¢"d" and this implies
a|ecd, sob|c.

O

Lemma 2.2. Let H be a monoid. If a € Sqft H and a = biby...b,, then
birprb; fori,je{l,...,n}, i #j.

Proof. Suppose b; and b; have a common non-invertible divisor d for some
i,j € {1,...,n}. Hence a = byby...b, is not square-free because d* | a. [

Lemma 2.3. Let H be a pre-Schreier monoid.
(a) Leta,b,c,de H. Ifab=cd, arpr c andbrpr d, thena ~ d and b ~ c.
(b) Letay,as,...,a,,b€ H. Ifa;rpr b fori=1,2,...,n, thenajas...a,rpr b.
(¢c) Leta,be H. If arprb, then a*rprt’ for any k,l € N.

(d) Let ay,as,...,a, € H. If ay,0a9,...,a, € Sqf H and a; rpr a; for
i,7€{1,2,...,n}, i # j, then ayas...a, € Sqf H.

(e) Let ay,ag,...,a, € Sqf H, b € H. If a;rpra; fori,j € {1,2,...,n},
i#janda; | b fori=1,2,...,n, then ajas...a, | b.

(f) Leta,by,...,b, € H. Ifa|by...by,, then there exist ay ...a, € H such
thata =ay...a, and a; | b; fori=1,... n.
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Proof. (a) Assume that ab = cd, arprc and brprd. If a = 0 and H is not a
group, then ¢ € H*, so d = 0 and then b € H*.

Now, let a,d # 0. Since a | cd and arprc, we have a | d. Similarly, since
d | ab and drprb, we obtain d | a. Hence, a ~ d, and then b ~ c.

(b) Induction. Let a;rprd fori=1,...,n+ 1. Put a = ay...a,. Assume
that arprb. Let ¢ € H be a common divisor of aa,; and b. Since ¢ | aa, 1,
there exist ¢1,co € H such that ¢; | a, ¢3 | a,41 and ¢ = ¢jco. We see that
c1,02 | b, s0 ¢1,c9 € H*, and then ¢ € H*.

(c) Let a,b € H. Assume arprb. Then by (b) we get a*rprb for any k € N.
And again by (b) we have a* rpr b’ for any [ € N.

(d) Induction. Take ay,...,a,+1 € Saf H such that a; rpr a; for i # j. Put
a=ay...a, Assume that a € Sqf H. Let aa,,; = b*c for some b,c € H.

Since ¢ | a1, there exist c¢;,co € H such that ¢ = cic, ¢ | a and
¢o | i1, 80 a = c1d and a,41 = cye, where d,e € H. We obtain de = b?. By
(b) we have a rpr a,41, so d rpr e. And then by (c), there exist by,by € H
such that d ~ b3, ¢ ~ b3 and b = b1by. Since a,a,., € Sqf H, we infer
bi,bo € H*, so b e H*.

(e) Induction. Assume the assertion for n. Consider ay, ..., a,, a,+1 € Sqf H,
a;rpra; for i # j, and b € H such that a; | b for i = 1,...,n + 1. Put
a = ayj...a,. Then, by induction hypothesis, a | b, so b = ac for some ¢ € H.
Moreover, arpra,y; by (b). Since any1 | ac we obtain a,; | ¢, and then
aany1 | ac.
(f) Simple induction.

]

In the following Proposition we have a very important property in a pre-
Schreier monoid.

Proposition 2.4. Let H be a pre-Schreier monoid. Then
Gpr H = Sqf H.

Proof. Let a € Sqf H. Assume that a | b" for some b € H and n € N. Then,
by Lemma (f), there exist aq,...,a, € H such that a = a;...a, and
a; | bfori=1,...,n. Observe that a;...a, € Sqf H and a, rpra; for i # j,

by Lemma[2.2] so a; ...a, | b by Lemma (e). O

Lemma 2.5. Let H be a GCDs-monoid and a € H. Let X C H be any
non-empty subset of set of divisors of a. Then there is GCD(X).
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Proof. Let Y = {d € H | 3c € X : a = cd}. Denote by e a greatest
common divisor of the set Y. Then e divides every element of the set Y, so
by definition of Y we get e | a. We have a = ef, where f € H. We will show
f=GCD(X).

First we prove that f is least common multiple of elements of the set X.
Consider any element ¢ € X. Since ¢ | a, then a = ¢d, where d € H. We
have d € Y, so d = eg, where g € H. Thus, since d = eg, then cd = ceg, and
since ef = a = cd, then ef = ceg. Then f =cg, soc| f.

Now, we will show that every least common multiple of elements of X is
the multiple of element f. Consider any element ¢ € X such that a = cd,d €
Y. We know that ¢ | h, so c¢d | hd, hence a | hd. Let Z = {bh,b € Y'}. Then
we have GCD(Z) = h - GCD(Y) = he. Since a | hl, then a | eh. We know
a=-ef, hence ef | eh, so f | h. O

Lemma 2.6. Let H be a monoid and X C Gpr H. Assume that there exists
GCD(X). Then LCM(X) € Gpr H.

Proof. Denote | = LCM(X). Consider any element b € H such that [ | b"
for some n € N. Since [ is the least common multiple of set X, then for any
c € X we have ¢ | [. Then ¢ | b". Because ¢ € Gpr H, so ¢ | b. Then [l |b. O

3 Square-free elements in a quotient monoid
and a group of fractions

Proposition 3.1. Let H be a monoid. Then Sqf H C Sqf G, where G is a
group of fractions of H.

Proof. Since G is a group, then Sqf G = G. If H C G and a € Sqf H, then
a € G=SqfG. ]

Proposition 3.2. Let H be a monoid. Then Sqf H/I C Sqf H for some
tdeal I of H.

Proof. Assume a € Sqf H/I and suppose a ¢ Sqf H. Then a = b*c, where
be H\ H*, c € H. Since a ¢ H*, then a € [ for some ideal I of H. Hence
a+I=0c+1=0+1. A contradiction. n

Proposition 3.3. Let H be a monoid. Then Sqf H C Sqf H[X].

Proof. Suppose that s ¢ Sqf H[X]. Then s = f?g, where f € H[X]\ H,
g € H[X]. Hence s € H[X]\ H,so s ¢ Sqf H. O



4 Types of square-free and radical factoriza-
tions and conditions for the existence of
some divisors

In this chapter we consider the relationship between square-free and rad-
ical factorizations and the conditions for the existence of some square-free or
radical divisors in some monoids.

The following properties of the monoid H are paired: the square-free ver-
sion and the radical version, for example in / the fragment ,,s1, So, ..., Sp
€ Sqf H/ Gpr H” we read that for property we have ,,51,59,...,8, €
Sqf H”, and for property we have "sq,89,...,5, € Gpr H”.

Let H be a monoid. Consider the following conditions:

/for every a € H there exist n € N and sy, s9,...,s, € Sqf H/ Gpr H
such that

a = S§1589...8p,

@/@ for every a € H there exist n € Nand s1, s9,...,s, € Sqf H/ Gpr H
satysfying the condition s;rprs; for 7,5 € {1, 2, ..., n}, ¢ # j such that
a = 515385...5",

@/@ for every a € H there exist n € Nand s1, so, ..., s, € Sqf H/ Gpr H
satysfying the condition s; | s;41 for i = 1,...,n — 1 such that

a = S1582...8y,

@/@ for every a € H there exist n € Ny and sq, s1, ..., s, € Sqf H/ Gpr H

such that

2 n
a = 505153 ...5°

/ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H satysfying
the condition brpr ¢ such that

a = bc

and there exists d € Sqf H/ Gpr H such that d* | b and b | d" for some n € N,

/ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H

satysfying the condition brpr ¢ such that

a = bc



and for every d € Sqf H/ Gpr H, if d | b then d? | b,

/ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H

satysfying the condition brpr ¢ such that
a = bc

and there exists d € Sqf H/ Gpr H such that d? | b,

@ / @ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H such that
a = bc

and a | ¢" for some n € N,

@ / @ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H such

that
a = bc

and for every d € Sqf H/ Gpr H, if d | a then d | ¢,

@ / @ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H such
that
a = bc

and for every d € Sqf H/ Gpr H, if d | b then d | ¢,

@ / @ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H such
that
a = bc

and there exists d € Sqf H/ Gpr H such that d | ¢" for some n € N,
/ for every a € H there exist b € H and ¢ € Sqf H/ Gpr H such that

a = bc.

5 Relationships between square-free
and radical factorizations

In this section we consider relationships between square-free and radical
factorizations and conditions for the existence of some divisors.

Proposition 5.1. Let H be a monoid.
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(a) The following implications holds:

®
Y

®
()
<5 @-® &
1
H<EE @B
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Proof. (a)
@:@ Put t, = s;. Since s1 | sg, then s = s1t, 1 = tut, 1 for

some t, 1 € H. Since sy | s3, then s3 = sot,, o = tyt,_1t, o for some
tn_o € H. Generally, we get s; = s;_1t,_j11 = tptp_1...th_ir1, Where
tostn_t1,--. thnir1 € H forv=2,3,...,n. Hence

a = S$182...8, = tn(tntn,1)<tntn,1tn,2) Ce (tntnfltnfz e tgtl) =
= 1" }tg L3t

Since s,, = tyt,_1...tat1, then from Lemma we refer tq, to, ..., t, €

Sqf H/ Gpr H. While from Lemma we get ¢;rprt; for i # j.

@é@ From @é@ we can present an element a in the form a =

wpusus ... u, where uy, ug, ..., u, € Sqf H/ Gpr H satysfying the condition
wirpru; for 4,5 € {1, 2, ... , n}, ¢ # j, where s,_;41 = s,_u; for i €

{1,2,...,n—1} and u, = s1. Then

n n T
E Z;:O Cgk)Ql . (k)2z . (k)
[[uwi=11w =TI =TTy

k=1 k=1 k=1 1=0 i=0 k=1

F)
Denote t; = [[;_,u, for i = 0,1,...r. Because u;rpru; for i # j, so
from Lemma 2.2 we have t; € Sqf H Therefore a = tot3td .. .t

k=3 cik)2Z for k=1,2,...,n and cl- ) e {0,1}.

@é@ Because

where

S1 | SnyS2 | Spyevy Sn1 | Sny Sn | Sns

hence 5132 Sp | S, so a | ¢ for ¢ = s,. Of course a = bec, where b =

5152 .

@:>. .:> :> — Obvious.

:> Let a = be, where b € H, ¢ € Sqf H, brprc and let d € Sqf H

such that d | b. Since d | b, then d | a. By assumption we have d | ¢. Since
d|b,d]ec, then d € H* because brprc. Since d € H* and d | b, then d? | b.

@é Since a = bc, where b € H, ¢ € Sqf H such that brpre, and

d|b=d|c, we get d € H*, and then d? | b.

n’
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@i@ Let d € Sqf H such that d | b. Then d | a and by assumption
we get d | c.

@é@ Let a = bc, where b € H, ¢ € Sqt H. Let d € Sqf H satisfies

an implication d | b = d | ¢. Then H for some n € N. There exists

deSqf H
d|b

d € Sqf H satisfies d' | b such that &' | [] d]| " We get d' | ™.

deSqf H
d|b

(b)

:> Let e € Gpr H be such that e | b. By assumption we have b | d",

hence e | d*, because e | b. But e € Gpr H, so from the fact that e | d"* we
have e | d, thus e? | d>. By assumption we have d? | b, so €? | b.

@:> Let a = bc, where b € H,c € Gpr H such that a | ¢™ for some
m € N. By assumption we can b presented in the form b = de, where d € H,
e € Gpr H such that b | e for some k € N.

Since ¢ | b, b | a and a | ¢™, then e | ¢". But e € GprH, so e | ¢
by definition. Then ¢ = ef, where f € H. By Lemma [2.1] we refer that
f € Gpr H, and from Lemma [2.2| we have erpr f. From equation b = de we
have be = de?. We get a = bef, where e? | be and be | "1

Now we will prove that berpr f. From divisibilities d | be, be | e**! and
eF L | F we have d | &L and f | ¢, ¢ | &L, so f | L In other hand we
have df | bef, bef | a and a | ¢! for some | € N, so df | ¢!. Hence since d | c*,
|, df |, then drpr f. And since erpr f, then berpr f.

k+1

@é@ Let d € Gpr H be such that d | a. Since d | a and by assumption
a|c", then d | ¢". Because d € Gpr H, so d | c.
@:> Let a = be, where b € H, ¢ € GprH. Since b | a and a | ¢" for
some n € N, then ¢" = bc for some ¢ € H. Hence ¢ | ¢". Since ¢ | ¢, then
d e ie e=dd, drprd’, where ¢ € Sqf H.

We have a” = b"c" = b"bd = 0" and a" = b"c" = b"nd™. Then
b= "1™ We get a = be = d'nd™ = (d")".

If n = 2k, then a = (*"")2c". If n = 2k + 1, then a = (¢*™*+1)2¢.

(c) The proof comes from the fact that every radical generator is a square-
free.

[]
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Let’s define another class of monoid. A monoid H is called SR-monoid,
if Gpr H = Sqf H. Therefore it is enough to consider square-free properties.

Proposition 5.2. Let H be a SR-monoid. Then

(a) the following implications hold:

’%
L -®
\(8 (3
«:@UQ;»
51y

Y
= 62

T
(b) the following equivalences hold:

() & (&

for A€{0,1,2,3,4,4.1,4.2,5,5.1,5.2,5.3,6}.

H<C)® @
f

Proof. (a) Since H is a SR-monoid, so every implications from Proposition

(b) hold.

(b) Obvious.
[l

Since in pre-Schreier monoids, GCD-monoids and GCDs-monoids the SR
property holds, therefore in the following three Propositions it is enough to
consider square-free dependencies.

Proposition 5.3. Let H be a pre-Schreier monoid. Then

(a) the following implications and equivalences hold:

13
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(b) if the condition @ holds, then H be GCD-monoid.
Proof. (a)
@é@ An element a can be written in the form

a = Sp(Sn—15n)(Sn—2Sn—15n) - - - (5283 ... $n) (515283 . . . Sn)-

Put: ¢, = sp_it1Sn—it2---Sn_15, for ¢ = 1,2,...,n. Because s;, So, ...,
sp € Sqf H and s;rprs; for i # j so from Lemma (e) we have tq, to, ...,
tn € Saf H. Of course ¢; | t;4q fori=1,2,...,n—1.

®:> Put b = s2s3...s" and ¢ = s;. From the fact that sy, s9, ..., s, are
pairwise relatively prime results brprc from Lemma (d). Moreover for
d = $983...5, we have d* | b,b | d". Because s;rprs; for i,j € {2,3,...,n},
i # j, so from Lemma (e) we have d € Sqf H.

:@ Assume a = bc, where b € H, ¢ € Sqf H such that brprc and
b = d*, b | d™, where d € Sqf H and m € N. Then a = d?ec = (de)(cd).
Since d | b, brpre, then drpre, so cd € Sqf H by Lemma[2.3] (d). We get also
that since b | d™, then be | d"¢, and because d™c | (cd)™, so a | (cd)™.

i@ Let a = be, where b € H, ¢ € Sqf H such that brpre. Let

d € Sqf H such that d | b. By assumption d? | b, i.e. b = d*g for some g € H.
Hence a = bc = d?gc = ef, where e = dg, f = dc. Since d | b, brpre, then
drprec.

14



By Lemma [2.3] (d) we have ¢cd = f € Sqf H. Let d’ € Sqf H such that
d | a. Then d' | ef and hence d' | e or d' | f.

If d | f, then end of proof. If d’ | e, then d’' | dg and hence d’ | d*g, then
d | b. Since d' | b and brpre, then d' t¢, d' | d. We get d' | ed, so d' | f.

é@ Let d € Sqf H. We have b = d?g for some g € H. We get

a=bc=d*qc=cf, e =dg, f=dc. Sinced | b, brprc, then drprc. Since
¢, d € Sqf H, crprd, then by Lemma [2.3(d) we have ¢d = f € Sqf H. Since
d | dg, then d | dc.

The other implications hold from Proposition 5.1
(b) Since every square-free element of a pre-Schreier monoid is radical, it

follows from [5], Corollary 4.5, that every pre-Schreier monoid that satisfies

property @ has to be a GCD-monoid. Note that the notion of a GCD-
monoid is equivalent to the notion of a t-Bézout monoid in [5]. Therefore,
if H is a pre-Schreier monoid that satisfy property @, then every principal
ideal of H is a product of finitely many pairwise comparable radical principal
ideals of H, and hence H is a t-Bézout monoid (i.e., a GCD-monoid) by [5],
Corollary 4.5.

m

Proposition 5.4. Let H be a GCD-monoid. Then the following implications

and equivalences hold:

RN
T Z

$

4

2

J

G

U
5.
62

@¢ @¢@¢@
¢

T
Proof. :>@ Since every square-free element in the GCD-monoid is rad-

ical and any element a € H can be presented as a = s155...S,, where s1, $o,
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.., Sn € Sqf H, then from the Theorem 3.10 from [5] we conclude that in
every radical factorial GCD-monoid any radical r-finitely generated r-ideal
of H is principal. And from the Corollary 4.5 from [5] we get that every
principal ideal is a product of a finite number of pairwise principal ideals.

:> Let a = b%c, where b € H, ¢ € Sqf H. Let d = GCD(b,c).

We have b = db/, ¢ = dc/, where ¢/, d € Sqf H, b'rprc, drprcd. We get
a = (d*b*)c and d* | d3b™.

The other implications and equivalences hold from Proposition [5.3
m

Proposition 5.5. Let H be a GCDs-monoid. Then the condition @ holds.

Proof. Let a € H and X = {d € Sqf H;d | a}. From Lemma[2.5 there exists
LCM(X). Let ¢ = LCM(X). By Lemma [2.6| we get that ¢ € Sqf H. Since
every element belonging to X divides a, the ¢ | a. Hence a = bc for some
b € H. Consider any d € Sqf H such that d | a. But d € X, hence d | ¢,
because ¢ = LCM(X). O

Note that in an atomic monoid the property holds and an implication
@ = @ holds. Indeed, let a = ¢1¢>...q,, where ¢; € Irr H C Sqf H.

Then for some i we have ¢; | a, a | ¢*. Then ¢; | ¢".

Proposition 5.6. Let H be an ACCP-monoid. Then

(a) the conditions , @ and hold,

(b) the following implicatios and equivalences hold:

®@=-® <@ @
- @«té@ @g ®
@
®



(c) the following implicatios and equivalences hold:

r ¢ 7
®=E)

XN

B)E)® &
fr
@¢@@@@@@@ ®

Proof. (a)
Any ACCP-monoid is atomic. Then holds.

If a € Sqf H, then put ¢ =a and b = 1.

Now, assume a ¢ Sqf H. Then a = b?c;, where by € H\ H*, ¢; € H. If
c1 € Sqf H, then put b = by, ¢ = ¢;.

Now, assume ¢; ¢ Sqf H. Then ¢; = b%cg, where by € H\ H*, co € H.

We continue this process until ¢, € Sqf H for some k € N. Then

a = b%Cl = b%bgCQ = bfbgbgc;; = — (blbg c bk)2ck.
Of course, this process has to stop. . holds.

Consider any element a € H. Since holds, then there exist b; € H,
c1 € Sqf H such that a = b?c;. Again, the element b; can be written in the
form by = b3cy, where by € H, ¢y € Sqf H. Similarly, we can introduce the
element by in the form by = bicz, where by € H, c3 € Sqf H. Continuing this
reasoning, we obtain an ascending sequence of principal ideals ideals

(bl) C (bg) C (bg) C ...
From ACCP-condition there exists £ € N such that

(0r) = (brt1) = (br42) = - .

17



In particular (by) = (bg41), i-e. by ~ b1 Then from by = b7, cp1 we refer
bk+1, Crk+1 € H*. Since b, ~ bk+1 and bk+1 e 0", then b, € H*.

Then

22, 322 2 323 22 9 = _ 32k 2 22 2k—1 2 22 2n
a=0bjcy =b; c5c1 =b3 ¢35 coc0 =+ =b crcyc5 ...C, = 505183 ... S, ,
where sg = c¢1, 51 = g, 59 =€, ..., Sp_1 = Ci, Spn = by. @ holds.

(b)

@i@ Consider any element a € H. We can presented element a in the

form a = byeq, where by € H, ¢; € Sqf H and for every d € Sqf H, if d | a,
then d | c.

We can presented element b; in the form b; = byco, where by € H, ¢y €
Sqf H and for every d € Sqf H, if d | by, then d | cs.

An element b, we can presented in the form by = bscs, where by € H,
c3 € Sqf H and for every d € Sqf H, if d | be, then d | cs.

Continuing, we get an ascending sequence of principal ideals
(by) C (b2) C (b3) C ....

Then by ACCP condition there exists m € N such that

(bn) = (bn-l—l) = (bn+2) s

In particular (by) = (bxy1), so by ~ bry1. Because by = byyiicry1, hence
ckr1 € H*. we know that for any element d € Sqf H, if d | by, then d | ¢y 1.
But c¢x11 € H*, hence since d | by, then d € H*.

We have
a = b101 = b262C1 == bkaCk,1 ...Cl = CkCl—1...Cq,

because b, € H*. We show that for every i = 2,3, ... k the divisibiity ¢; | ¢;_1
holds. For i = 2 we have ¢y | by, because by = byco. Since ¢y | by, then ¢, | a.
Then by the assumption ¢y | ¢;. For ¢ = 3,4,... we know that for every
element b;_; we can presented in the form b;_; = b;¢;, hence ¢; | b;_1. We
also know that b; 1 | b;_o. And hence ¢; | b;_». By the assumption we have
for any element d € Sqf H, if d | b;_s, then d | ¢;_1, so since ¢; | b;_o, then
¢ | ci—1, because ¢; € Sqf H.

:>@ Consider any element a € H. The element a can be presented in
the form a = b%c;, where b, € H, ¢; € Sqf H/ Gpr H.

18



An element b; can be presented in the form b; = b3cy, where by € H,
co € Sqf H/ Gpr H. Similarly, we can presented an element by in the form
by = b3cs, where by € H, c3 € Sqf H/ Gpr H.

By continuing this process, we obtain an ascending sequence of principal
ideals
(bl) C (bg) C (bg) -

By ACCP condition there exists k € N such that by ~ bg,1. And because
b, = b%+10k+1, hence by1,cre1 € H*. Since by ~ b1 and by € H*, then
b, € H*.

Then
a =0 =0 = F e = =2 e =
= 505252 ... s,
where sg = ¢, 1 =9, So =C3, ..., Sp_1 = Ck, Sp = bg.

(296

Consider any element a € H. We can introduced the element a in the
form a = bycy, where by € H, ¢; € Sqf H and an implication d | by = d | ¢;
holds for every d € Sqf H.

An element b; can be presented in the form b; = bycy, where by € H,
co € Sqf H and an implication d | by = d | co holds for every d € Sqf H.
Next, we have by = bscs, and so on.

For any n € N we have an equation b, = b,11¢,41, where b,.1 € H,
Cni1 € Sqf H and an implication d | b, 11 = d | ¢,41 holds.

By ACCP assumption we have b,c, ~ b,i1¢p1. Since b, = b,i1¢n11,
then ¢, € H*. Since d | b, = d | ¢, and ¢, € H*, then d € H*. We get
Sqf H = H*.

Since a = b,¢pCp_1 .. .1, then a | .
(c)
(5r=(20)

Consider any element a € H. We can introduced the element a in the
form a = bycy, where by € H, ¢; € Gpr H and a | ¢}* holds for some n; € N.

An element b; can be presented in the form b; = byco, where by € H,
co € Gpr H and b | ¢5? holds form some ny € N.

An element b, can be presented in the form by = bscs, where by € H,
c3 € Gpr H and by | ¢5® holds for some n3 € N.
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Continuing our reasoning we get an increasing sequence of principal ideals
(by) C (be) C (b3) C ...
By ACCP condition there exists n such that
(ba) = (bas1) = (bayz) = - ..

In particular (b,) = (buy1), S0 by ~ byyq. And because b, = b,41¢11, SO
Cn+1 € H*. There is also divisibility b, | ¢, 71", hence b, € H*.

Then we get
a = b161 = bQCQCl = bgCgCQCl == annCn,1 ...CC1 = 8189...8p,
where s1 = b,¢p,, So = Cp_1, S3 = Cp_9, ..., Sp = Cq.
It remained to prove that for ¢ = 1,2,...,n — 1 the condition ¢;11 | ¢

holds. For i = 1 we have divisibilities ¢y | b1, b1, b1 | a, a | ¢]"*, hence ¢3 | ¢1,
because ¢y € Gpr H. For i > 1 divisibilities ¢;11 | b;, b; | bi—1, bi—1 | ;" holds,
and hence ¢;11 | ¢;. Since ¢;41 € Gpr H, then ¢4 | ¢;.

:>@ Consider any element a € H. An element a € H can be presented
in the form a = b?c;, where by € H, ¢; € Gpr H.

An element bic; can be presented in the form byc; = bicy, where by € H,
co € Gpr H. Similarly, we can presented an element byco in the form bycy =
bicy, where by € H, c3 € Gpr H.

By repeating the process, we obtain the following ascending sequence of
principal ideals
(blcl) C (bQCQ) C (bgCg) C ...
By ACCP condition there exists k € N such that
(bkcr) = (bk+1Crr1) = (brraCrra) = ...

In particular (bgcx) = (bgg1Ckt1), 80 brcg ~ briicry1. From the equation
brck = b3y ces1 and from bycy ~ byiicp we get bryy € H*.

We have the following divisibility:
Ck+1 | bicr, brcy | br—1Cr—1,...,b2co | bici,bicy | a.

Therefore, since a = bicy, then a | (bic;)? Since bic; = b3cy, then bic; |
(bac2)?. Generally for i = 2,3,...,k we have by_1c,_1 | (brpex)?. Hence
a| (bkck)zk. Since bicp ~ 1, then a | ciil.

6@
The proof is similar to @:@ in (b).

The other implications hold from Proposition 5.1} ]
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6 Unique representation

In this section, we present the unique presentation of the factorizations
and the conditions of existence of square-free and radical divisors.

Proposition 6.1. Let H be a monoid.

(a) Consider any elements sy, Sa, ..., Sy, t1,te, ..., t, € Gpr H, such that
Si | Si+1 and tz‘ | ti-i—l; fori = 1,2,...,7’L— 1. ]f

Tl’I"Q...TnNtltg...tn,
thenr; ~t; fori=1,...,n.

(b) Consider any elements a,c € H, b,d € Gpr H, such that a | b™ and
c|d™ for some m,n € N. If

ab ~ cd,
then a ~ ¢ and b ~ d.

(c) Consider any elements a,c € H, b,d € Gpr H, such that for any e €
Gpr H implications hold: if e | ab, then e | b and if e | cd, then e | d. If

ab ~ cd,
then a ~ ¢ and b ~ d.

Proof. (a) Assume $183...8, ~ tity...t,. From assumption we have:
ty | tos to | tss ooy tat | o
Then
t | tn, to | tn, - oy tnot | ta, to | th,

hence tity...t, | t". Since s, | tits...t,, then s, | t7. Because s, € Gpr H,
then from definition we get s, | ¢,. We justify analogically ¢, | s,. Hence
Sy ~t, and then s;...8,_1 ~t1...th_1.

Repeating the above reasoning for sy ...8,_1 ~t;...t,_1 we get s,,_1 ~
th—1 and $1Sg...8,_2 ~ t1ty. .. tH_a.

Continuing, we get s; ~ t; for i =1,2,...,n.

b) Assume ab ~ cd. We notice b | cd, and since ¢ | d", so b | d"*t'. Because
b € Gpr H, then from definition we refer b | d. Similarly, we justify divisibility
d | b. Therefore b ~ d, and then a ~ c.
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(c) Assume ab ~ cd. We notice that b € GprH and b | ed, so b | d by
assumption. Similarly, we justify divisibility d | b. Hence b ~ d, and then
arc.

[]

Proposition 6.2. Let H be a pre-Schreier monoid. Consider any elements
S1,.--38n, t1, ..., tn, € Sqt H such that s;xprs; and t;rprt; for i,j €
{1,2,...,n},i#j. If

515555 ... 81 ~ titots . 1T
then s; ~t; fori=1,...,n.
Proof. Assume s18385...s" ~ t1t5t5 .. .17 Put s, =s;...8,, ti =1t;...t, for
i=1,2,...,n. Then sish...s, = sys3s3...s% and t)th ...t = t,4313 .. . ",
SO

!/ / ! 4! /
8182...Snwt1t2...tn.

Because s; rprs; and t; rprt; for 4, j € {1,2,...,n}, i # j, hence from Lemma
(e) we refer s = $;8;41 ... 8, t, = titix1...t, € Sqf H fori =1, 2, ...,
n. Since s;,, | s; and ¢;,, | t; for i = 1,2,...,n — 1, then from Proposition
(a) we get s, ~ t, fori=1,2,...,m, S0 $Sis1...8, ~ titisy...1,. Since
§iSi+1-.-8p ™~ tztz—l—ltn and Si+1.--Sp ti-l—l---tna SO §; tz for 1 =
1,2,...,n. Moreover s, ~ t! ie. s, ~ tp,. O

Proposition 6.3. Let H be a GCD-monoid.

(a) Consider any elements a,c € H, b,d € Sqf H, such that arprb, crprd
and for some elements e, f € Sqf H and m,n € N divisibilities €? | a,
ale™ and f? | c, c| f™ hold. If

ab ~ cd,
then a ~ ¢, b ~ d.

(b) Consider any elements a,c € H, b,d € Sqf H, such that arprb, crprd
and for any g € Sqf H the implication holds: if g | a, then ¢* | a. If

ab ~ cd,
then a ~ ¢, b ~ d.
(c¢) Consider any elements a,c € H and b,d € Sqf H. If
a’b ~ 2d,
then a ~ ¢ and b ~ d.
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(d) Consider any elements sg, S1, ..., s, € Sqf H and tg,t1,...,t, € Sqf H.
If

on 2n71 2 on 2n71 2
n S’l’l—l e 8180 ~J tn t?’l—l .. .t1t07

then s; ~t; fort=0,1,...,n.

Proof. (a) Assume ab ~ cd. Put ¢ = GCD(d, e). Since d € Sqf H, then by
Lemma [2.1| we have g € Sqf H, because g | d. Since g | e, then ¢g* | €?, and
hence g* | a, because €? | a. Since g* | a and a | cd, so ¢* | cd. Let us remind
g | d, then g* | d*. Since ¢* | cd, g* | d* and crprd, hence by Lemma we refer
g* | GCD(cd,d?), so g? | d. Because d € Sqf H, so g € H*. Then drpre,
because ¢ is their greatest common divisor. Therefore by Lemma (c) we
refer drpre™, and hence drpra, because a | €. Similarly, we justify that
brpr ¢ putting h = GCD(b, f) and we repeat the reasoning. Then by Lemma
2.3| (a) we have a ~ ¢, b~ d.

(b) Assume ab ~ cd. Put g = GCD(a,d). Since d € Sqf H, then by Lemma
we have g € Sqf H, because g | d. Since g | a, then ¢* | a by the
assumption. Hence g* | cd. Let us remind g | d, then ¢* | d*. Since ¢° | cd,
g* | d* and crprd, hence we refer g> | GCD(cd, d?), so g? | d. Because
d € Sqf H, so g € H*. Then arprd, because g is their greatest common
divisor. Because d | ab, hence d | b. Similarly, we justify that brprc putting
h = GCD(b, ¢) and we repeat the reasoning. Then by Lemmal[2.3](a) we have
an~c, br~d.

(c) Assume a?b ~ c*d. Put e = GCD(a, ¢) oraz f = GCD(b,d). Let a = eay,
¢ = ecy, where ag,co € H and agrprcg. Let b = fby and d = fdy, where
by, do € H and by rpr dy.

We get a®b = e?ad fby and c2d = e*cyfdy. Since a®b ~ c*d, then e*a? fby ~
eco fdy, so aiby ~ cidy. From Lemma (e) since agrpr ¢y, then a2 rprc?.
We have dy | a2by and byrprdy, so from Lemma (a) we get dy | a?.
Similarly we have a | c2dy and a3rprc3, so from Lemma (a) we get
a? | dy. Hence a2 ~ dy. We show analogously that by ~ c2.

Since by | b, dy | d and b,d € Sqf H, then from Lemma we refer
bo,dy € Sqf H. But by ~ ¢ and dy ~ a3, so by,dy € Sqf H. And from
ag ~ dy, 3 ~ by we have ag,co € H*. Then we get a ~ e, ¢ ~ €, 80 a ~ c.
Analogously we get b~ f, d ~ f,so b~ d.

t2n t2n— 1

n n—1
(d) Assume s2"s2" | ... s¥sg ~ 212" .. t3tg, where Sg, S, ..., Sn, to, t1,

n—1
o, tp,€Sqf H.

Then (s152...52" )2sg ~ (t1t2... 12" ")%t,. From (c) we get so ~ to and

n—1 n—1
s185...82  ~ i 2T
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277,71 gn— 1

. . -2
Again using (c) for s1s3...82" = (s9s2...8%" )2sy ~ {1212 =

(tat2 .. 12" )2t we get 51 ~ 1y and sy52 ... 52" ~ tot.. 12", By repeat-
ing the reasoning we get s; ~¢; for i =0,1,... n.

[]

7 Some examples
Example 7.1. Let
For any k € Ny determine the set

Hy =A{(z,y) EN%: r+y=k}.

For any r € N consider the following submonoid of H:

H? = | | Hy.

keNg

Then H®) is a ACCP-monoid and

Saf H™ = {(0,0),(0,7), (1,7 — 1),...,(r — 1,1),(r,0),(1,2r — 1),(3,2r —
3),...,(2r—1,D}

For radical generators we have:

For r = 1 we have Gpr H™ = {(0,0), (0,

For 7 = 2 we have Gpr H™ = {(0,0), (1,
0,0

1), (1,0)}.
(1,1
For r > 3 we have Gpr H™ = {(0,0)}.

)}

For r = 1 All conditions are met.

For r > 1 the monoid H™ conditions: Os, 1s, 2s, 3s, 4s, 5s, 6s, 4.1r, 4.2r,
5.1r, 5.2r, 5.3r are met. The other conditions are not met.

Example 7.2. For some k € N let H = Qs U {0}.
All quotient numbers of interval [k, 2k) and 0 are square-free.

A monoid H is GCD-monoid. It sufficient put GCD(a, b) = min{a, b} for all
a,be H.

In the monoid H all conditions are met.
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Example 7.3. Let H = N2. We have H* = {(0,0)}, i.e. H is a reduced
monoid.

For any k € Ny determine a set
Hy = {(z,y) e NZ: 2 +y = k}.

Then H = Uy, Hr-

For any r € N consider the following submonoid of H:

Of course H") is a reduced monoid (as a submonoid of a reduced monoid)

and
HY = ((0,7), (1,7 = 1),...,(r —1,1),(r,0)).

For odd = and k = 2 elements (z, kr — z) are square-free. Of course (0,0)
also is square-free.

A submonoid of free-monoid is a monoid with finite factorial. In particular
H is an ACCP-monoid.

In the monoid H conditions: Os, 1s, 2s, 3s, 4s, 4.1r, 4.2r, 5s, 5.1r, 5.2r, 5.3r,
6s are met. The conditions Or, 1r, 2r, 3r, 4r, 4.1s, 4.2r, 5r, 5.1s, 5.2s, 5.3s, 61
are not met.

Example 7.4. Let H be a monoid, not a group such that every element of

1
H be a square. In particular Q- and <2—n |n e N>. In the monoid H the

condition 6s is met. The others are not met.

Example 7.5. Consider a submonoid of free monoid

H= <x17$27--~73/173/27"' | Z/i:l'f+1yg+1,i= 1,27...>,

where p, ¢ € N. Then H is a non-factorial GCD-monoid for any p, q.

If p=¢q =1, then in the H all conditions are met, in particular, it is non-
atomic monoid satysfying 2s.

If q is even, then in the H 6s is met, and no one of 0s—5.3s and Or—6r.

If ¢ is odd and (p,q) # (1,1), then H satisfies no one of the conditions 0s/0r
— 6s/6r.
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8

The condition about square-free elements
in a submonoid

In this section we introduce results about condition Sqf M C Sqf H, where
M is a submonoid of the monoid H.

Let’s recall that by F(B) we denote a free monoid with basis B, where
B C H is a subset.

Theorem 8.1. Let H be a factorial monoid. Let M C H be a submonoid
such that M* = H*. The following conditions are equivalent:

(a)
(b)

(¢)

(d)

(¢)

(f)

(9)

(h)

Sqf M C Sqf H,
Irr M C Sqf H and for every a,b € M the following implication holds:

arpr,, b= arpryb,

Irr M C Sqf H and for every a,b € Irr M the following implication
holds:
a~y b= arpryb,

M = H* x F(B), where B is an any set of pairwise relatively prime
square-free non-units (of H ),

for every sy, sa, ..., s, € Sqf H, such that s;rpry s; dlai,j € {1,2,...,n},
1 # j the following implication holds:

slsgsg...szEM:>31,52,...,5n€M,

for everyqi,qo, ..., qn € Irt M such that ¢; on q; fori,j € {1,2,...,n},
1 # j, the following implication holds:

(1 (n)
k kn ¢ Ci
@' q €EM=q ...q0 €M,

where k; = cWor 1 4 céj)ZO for 3 =1,2,...,n with cgj) € {0,1} for
i=0,1,...,7,
for every sg, s1,...,s, € Sqf H the following implication holds:

2,22 2"

508185 ...8, € M = sg,...,8, € M,

n

for every a € H and b € Sqf H the following implication holds:
a’be M = a,be M.
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Proof. First, we notice H is a BF-monoid (bounded factorization monoid),
because is a factorial monoid. Submonoid M satisfies M* = H*N M, so M is
also an BF-monoid ([7], Corollary 1.3.3, s. 17). In particular, M is an atomic
monoid.

(a)=-(c) Assume Sqf M C Sqf H. Since Irr M C Sqf M, then Irr M C Sqf H.

We show that if a,b are not relatively primes, then a ~j; b. Suppose
that there exist a,b € Irr M such that a ~,; b and a, b are not relatively
primes in H. Then t = GCDg(a,b) € H \ H*, so a = tu, b = tv for some
u,v € H, urpryv. Since a,b € Irr M, then a,b € Sqf H, but u |g a, v |g b,
so u,v € Sqf H, and then wv € Sqf H, because urpry v (Lemma (d))

We have ab = t?uv & Sqf H, because t € H \ H*. Hence by assumption
ab & Sqf M, i.e. ab = c*d for some ¢ € M\ M*, d € M. We can assume
that ¢ € M \ M* is minimal and satisfies the following properties: ”there are
a,b,d € H such that ¢ | a,b and ab = ¢*d ”. We have c*d = t*uv, where
uv € Sqf H, so ¢ |g t, because H is factorial, and then t = cw for some
w e H.

We get a = tu = cwu, so uv € Sqf H because a € Sqf H. We have
ac = cwu & Sqf H, so ac & Sqf M, hence ac = e*h for some e € M \ M*,
h € M. Since e*h = c*wu, where wu € Sqf H, we refer e |5 ¢, because
e’h = c*wu,a = cwu, so €?h = ac, and then e |y c. Next, we have also
e |y cwu, then e | a. We get e |g a,c and ac = €%h, so e ~p ¢ from minimal
of c. Then e ~y; ¢, because M* = H*. But ac = e*h, so a ~y; eh ~yr ch.
Then a ~); ¢ because a € Irr M and c € M \ M*.

Similarly we show b ~,/ ¢, so a ~; b, a contradiction.

(b)=(c) It sufficient to notice that for every a,b € Irr M the following
implication holds
a =y b= arpr,,b.

Because, if a, b € Irr M and a ~; b, then from (b) we have arpry b. Hence,
if a, b € Irr M are not relatively primes in M, then a = ¢d and b = ce for
some ¢ € M\ M*, d,e € M. Because a,b are irreducible in M and c is non-
ivertible, then d,e € M*. So, from a = cd, b = ce we get a ~p ¢, b ~y; c.
We have a ~ 1 b.

(¢)=(b) Consider elements a,b € M such that arpr,; b. We know that M
is an atomic monoid. Let a = a;...a,, and b = by ...b, be factorizations
to irreducible elements in M. Since arpr,, b, then for every ¢,j we have
a; »*n bj, so a; 1pry by, but then arpry b.

(¢)=(d) Let B be a maximal (with respect to inclusion) set of pairwise
non-associative (in M) irreducibles in M. By (c) we refer that elements from
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B are pairwise relatively prime in H. Since H is a factorial monoid, then B
generates a free submonoid. Because M is atomic and M* = H*, then from
[7] Theorem 1.2.3.2. we get M = H* x B.

(d)=(e) Let a = s183s3...s" € M, where sy,...,s, € Sqf H, s;rpry s; for
i # j. By (d) an element a can be presented in the form a = ctt3t3 ... t7,

where ¢ € H*, t; = H;=1 bgi) € M, r, € Ny, m > n and by) € B such that

bgi) # b,(f) for j # k. Since by) are square-free and pairwise relatively primes
in H, then t4,...,t,, are also square-free, because in a factorial monoid the
product of parwise relatively primes square-free is a square-free (Lemma
(d)). We refer that if bgi) are pairwise relatively primes, then t,...,t,, are
pairwise relatively primes in H. By Proposition [6.2| we get s; ~p t; fori =1,
2,...,n. Since s; ~g t; and t; € M, then s; € M.

(e)=(f) Leta=gq}"...¢" € M, where q,...,q, € Irr H, q; o5 g; for i # j,
and ki, ..., k, € Ng. Put m = max(ky,...,k,). Forl =1,...,m let’s denote
8 = Hj: - Since ¢, ...,q, € Irr H, then ¢q,...,q, € Sqf H.

We show that since ¢; #g g; for ¢ # j, then ¢ 1pry g;. Suppose that g;,
¢; are not relatively primes H, i.e. there exists ¢ € H \ H* and there exist
d,e € H such that ¢; = cd, q¢; = ce. But ¢;,q; € Irr H, so d,e € H*. Hence

4i ~ C, 4j ~ C, SO g; ~ gj.

Since ¢;rpry q; for i,57 € {1,2,...,n}, 1 # j, then s1, sq, ..., s, € Saf H.
By definition s, for l = 1,2, ..., m we get s, rpry s;, where 4, j € {1,2,...,n},
i # j. Then we have a = s155...5™, 50 81, S, ..., S;m € M by (e).

Now, let k; = cWor . .+c(()j)20 forj =1,2,...,n, where cgj) € {0,1} for
i=0,...,7. We notice that if k;, = kj,, then cMor 4y 0811)20 = o 4
. .+c(()]2)20, ie. U= CED) for some i € {0,1,...,7}. Let’s denote d = ¢

)

) (n)
for all j such that k; = [, where [ = 1, 2, ..., m. Then R
&) (m)
d{ d!
51" ...sm € M.
(h)=(g) Let sg,...,8, € Sqf H sucthhat .i[)S%S%Q ...s2" € M. By induction
we prove, with respect to n, if sgs?s3 ...s2" € M, then sg,...,s, € M. For
n = 1 is obvious. Assume that this implication is true for any n € N. Let
505255 ... 2 € M. Then sgs2s2 ...s>" = (515253 ...s2" )2s0. By (h) we
get 515252 .. 52" 59 € M.
Since 515252 ... 372;;71 € M, then s1828% 82T = (598287 .. 52 7)2sy.
By (h) we have sys3s% ...s2 | 51 € M.
Continuiyng this process we have sg, s1, ..., s, € M.

= (h) Consider a € H, b€ Sqf H. Let a = s2" ... s?sy, where s, ...,s, €
g n 1
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Sqf H. If a?h = s2""" ... s¥°s2b € M, then s,,...,s1,50,b € M by (g), and
then a = s2...s%sy € M.

n -

(f)=(g) Let s, s1, ..., sn € Sqf H. Assume sos2s3 ...s2" € M. We
(1) o(m)
can write s; = w;q," ...qn, , where u; € H*, q1,...,qn € Irr H such that
] n n C(1> i
g u qfor j#1ic” €{0,1}. Then sos?s3 ... 52" = [Tly(uoq® )* =

wpudud® w2 gM gk where k; = P27 + .+ P24 ). By assump-

n
ey cm)

tion, if q’fl...qfnm € M, then ¢ ...qny € M for i = 1,2,...,n. Hence
S0y --,8, € M.

(g)=(f) Let ¢}'...¢" € M, where q1,...,q, € IrH, q; o q for j,1 €
{1,2,...,n},j #I. Putk; = cDor g .—|—cgj)2+cgj) forj =1,2, ..., n, where

(J) C(-l) C(n) . . 2 22 on
¢, €{0,1}. Let s; = ¢q," ...qs . By assumption, since s¢sis3 ...s; € M,
(1) (m)
then sg, s1, ..., s, € M. Hence ¢;' ...qn¢ € M fori=0,1,...,7.

(h)=>(a) Consider an element r € Sqf R. Suppose that r & Sqf H, sor = z%y
for some x,y € H such that x ¢ H* and y € Sqf H. Since 2%y € M, then we
get x,y € M. We have x € M*, so 2%y & Sqf M, a contradiction. n

Let M be a submonoid of factorial monoid H. From Theorem R.1] we
know that the condition Sqf M C Sqf H is equivalent to Irr M C Sqf H and
arpry; b = arpry b for every a, b € M. Hence the condition Irr M C Sqf H
is equivalent to Sqf M C Sqf H, when for every a, b € M since arpr,; b then
arpryb.

9 The condition about irreducible elements
in a submonoid

In this section we introduce results about condition Irr M C Sqf H, where
M is a submonoid of the monoid H.

In Proposition[9.1] we find a factorial condition which implies the inclusion
Irr M C Sqf H.

Proposition 9.1. Let H be a monoid which satisfies the condition 6s. Let M
be a submonoid of H. Assume that for every a € H, b € Sqf H the following
implication holds

a*b € M = a,ab € M.

Then Irr M C Sqf H.
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Proof. Suppose that there exists some ¢ € Irr M such that ¢ ¢ Sqf H. Then
c = a?b for some a € H and b € Sqf H. By assumption, since a’?b € M,
then a,ab € M. We notice a ¢ H*, because ¢ ¢ Sqf H, so a,ab ¢ H*. And
since a,ab ¢ H*, then a, ab ¢ M* — a contradiciton with the assumption
a(ab) € Irr M. O

An example [9.2] shows that in the Proposition [0.1] a factorial condition
which implies Irr M C Sqf H is not a necessary condition.

Ezample 9.2. Consider a monoid H = N and its submonoid
M =((1,1,0),(1,0,1)).
Then Trr M = {(1,1,0), (1,0, 1)}, so Irr M C Sqf H, but for
a=(1,0,0)€ H,b=(0,1,1) € Sqf H
we have
2a+b=(2,0,0)+(0,1,1) = (2,1,1) = (1,1,0) + (1,0, 1),

so 2a+b € M. Therefore a ¢ M and a +b= (1,1,1) ¢ M.

A factorial condition which implies Irr M C Sqf H, i.e. for every a € H,
b € Sqf H if a’bh € M then a, ab € M is very interesting and we show next
results for this factorial condition.

Theorem 9.3. Let H be a factorial monoid. Let M C H be a submonoid
such that M* = H*. The following conditions are equivalent:

(a) for every a € H and b € Sqf H the following implication holds

a’b € M = a,ab e M,

(b) for every sg, S1,...,s, € Saf H, if

2 n
505153 ...s52 €M,

then
2 2 22 2,22 on—1 M
Sn; Sn—15n, Sn—25n—15,, Sn—-35n—25,_1S,, , - -+, S0515353 ...S, € )
(c) foreverysi, sa, ..., s, € Saf H such that s;rpry s; fori,j € {1,2,...,n},
1 # j, the implication holds
2.3 n
515585 ...8, € M = Sp, 8,150, Sn—25n—15n, - - -, S152. .. 8, € M,
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(d) for every si, sa, ..., sy € Saf H, such that s; | siy1 fori =1, 2
n — 1, the implication holds

5182 ...8, € M = s1,89,...,8, € M,

(e) for every a € H and b € Sqf H such that a | b™ for some n € N, the
implication holds

abe M = a,be M.

Proof. (a)=(b) Consider elements s, 1, ...,s, € Sqf H such that sys2s2’

n . n— 2
.82 € M. Since (s153s2 ...52"") s € M, then from (a) we get:

2 22 2n71 2 22 anl
515583 ...S, (313233 oS )80€M.

2n—2

Next, since (3233332 .S )231 € M, then from (a) we get

2 22 2n—2 2 22 271,—2
595583 ...S, (828384 .5, )51 € M.

Continuing, since (sn_lsi)2sn_2 € M, then from (a) we get:

2 2
Sn—15,, Sn—1595n—2 € M.

Since s2s,_1 € M, then from (a) we get s, 1,5, € M.

From all steps we have:

2 22 277,—1 2 22 2n—2
51,

2
(313253 .8 )30, (325334 .55 oy Sp—15,5n—2, SnSn—1, Sn € M.

(b)=(a) Consider a € H, b € Sqf H such that a*h € M. A monoid H
is factorial, so an element a can be written in the form a = s;s3s3 ... 52"
where s; € Sqf H for v =1,...,n. Put sg = b. Then we get:

n )

2 n
505153 ...s52 =a’be M.

By assumption we have

2 22 gn—1 2 22 on—2 2
50515585 ...S, , 51528354 ...S, ..., Sp_25,-15,, Sp—15n, Sn € M.
. 2 n—1
Notice ab = sps153s3 ...s2" , so ab € M. Moreover
n—1
= 8183 PN Si =

= $p(Sp—15n) (sn_gsn_lsi) (sn_gsn_gsi_lsff) (sn_4sn_3s,21_257212_157213) .
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soa€ M.

(b)=-(c) Denote by [x] and |z] upper part (ceiling) and bottom part (floor)
of real number z.

Step I. First, we prove that if s;s3s3...s" € M, where sy, g, ..., S, €
Saf H, s;rpry s; for i # j, then sqsys3s7 . SL I S9835%82 . .. shtl e

Let a = s183s5...s" € M, where sy,...,s, € Sqf H, Si rer s; for i # ]
Then an element a can be written in the form a = tot2t% . where t =

o) (n)
sy ...sqn €SqfH,i=0,. Tandk—Z:OEk)Ql Wherec e {0,1},

k=0,1,...,n (see proof of @#@ Proposition
From (b) we have
totyt2tF 2 g t3 Y 22 by at 12, by gty t, € M.
Then

i =

T
or—3

=(trtot2t 2 ) (tatst22 ) (ot 18D (b1t )t € M.

r

From definition of exponents cg‘j ) we have

51598357 - . . sl = tott2 .. 12 e M,

59835355 . . skl = = 1,627 2 e M.

Step II. Now, we prove that if s;s3s3 ... s" € M, where sy, ..., s, € Sqf H,
s;tpry s; for i # j, then s15283... 8y, Sas3si...si1 e M.
Assume s18355...s" € M, where sq,...,s, € Sqf H, s;rpry s; for i # j.

We prove by induction with respect to [ that

Sg;ﬂ 21

Sl 1Tl 2= n—1-["0] n—[%]

[ 5
S S8, 0 snY o, s Sq B Sn e M.

Let ¢ = [%]. Then (¢ —1)2" <n < ¢2'. Put
5; = S(>i—1)24+15(i—1)2!42 - - - Si2t

fori=1,...,¢g—1and s, = s 1)21415(g-1)2142 - - - Sn-

Notice 57, 53, ..., s; € Sqf H and s} rpry s for i # j, because sy,...,s, €
Saf H, s;rpry s; for 7 # j.
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We have

2 n—1 n
s s s T s = s ()2 (s
Ml 121 EaREd
If s s> ...s,% s»® € M, then by Step I we have
o] Tor] A IN2( 2 INEL
5177 s 8,5 S = 5185(85)°(s}) (si)2le M
and
sgéﬂ_(ﬁ]sgi]_[ﬁ1 o SL;%]—@%W = shsh(sh)?(s5)?. .. (SQ)L%J eM
1—[L11 2172 n—fn
Since s, [21152 kl ...5n Ed € M, then also
it el

si_[?lﬂsz_(?%1 . .32_[2%] . s?w_(ﬁ]sgi]_[ﬁ] . .5’7[12%]_[21%1 e M.

There exists r € N such that 2" > n. Then 1 < ¢t < n and we have
(4] = 1. Finally, we have s15583...5,, Sas3s1...s0 ' € M.

Step III. Now, we prove (c¢) by induction with respect ton € N. Forn = 1
is obvious. Assumme that the condition holds for n and consider si, so, ...,
SnySn+1 € Sqf H, s;tpry s; for i # j such that s;s3s3...s"si™{ € M. By

Step II we have

2.3 -1
515283 ... SpSn41, 528555 ...8, S, 1 € M.

: : : 2.3 n—1.n
By inductive assumption for element sys3sy ... s "s;, ; we have

Sni1s SnSnils Sn_1SnSnils - -, S283 ... SpSpa1 € M.

(c)=(b) We apply induction with respect to n. The case for n = 0 is obvious.

Assume that the condition holds for all n € Nj i.e., for every sg, s1,...,5, €

. 2 922 on 2 22 2l—2 9l—1
Sqf H, if sgsis; ...s;, € M, then s, ;s,_1418; 1 05, 113 -+ -Sn_15. €M

for every 1 € {0,1,...,n}.
We prove the condition for n + 1. Let

2 n+1
a = 595253 '--5721+1 eM

where sg, $1,...,8,+1 € Sqf H. Then by Proposition , @é@ element

a can be written in the form

Y

a=ttats. . ",
where m = 2"*2 — 1 and t1,...,t,, € Sqf H, t;rpry t; for i # j.
By (c) we have
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sttty ooy tite ..t € M.

Notice m is odd, because m = 2"*2 — 1. Multiplying elements in the form
totyiq ...ty for every odd r we get

(titotsty .. .tm)(tstats ... tm) . .. (tmotm—1tm )tm = titatats .. e m

And if we multiply elements in the form t,t,.1...t,, for even r, then we get
(tatstats .. .tm)(tatste - . tm) - (buoilm) = totst22 .. th2) € M.
Notice, since m = 2"*? — 1, then L%J = 2"t — 1. Hence

t2t3t421t§ . th%J = (t2t3)(t4t5)2 o t'\;n%J’

because tots, tyts, ..., t,, € Sqf H by Lemma (d). From proof of Propo-
sition @@@ we get
m 2 n
(tats)(tats)?. . the) = 15252 52"

By inductive assumption we have

2 22 2l—2 2l—1
Sp—1Sn—14+15p_1425n—143 - - Sn_15, €M

for 1 € {0,1,...,n}. Moreover,

ttht%ti P tl—n%-l = (tltz)(t3t4)2 . t’r"n%“’

because tity, tsty, ..., t, € Sqf H by Lemma [2.3] (d). From proof of Propo-

sition @@@ we get
on

(trta) (t5ta)? . .t | = sgsys2s2 .52,

m

i.e. the condition for [ =n + 1.

(c)<(d) Since H is a factorial monoid, then by Proposition [5.3| we have
that an element a € H in the form

n
n’

a=88585...58

where s1, 89, ..., S, € Sqf H satisfy the condtion s, rprs; ford, j € {1,2,...,n},
i # j, can be written in the form

a = t1t2t3 Ce tn,
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where elements ty,ts,t3,...,t, € Sqf H satisfy the condition ¢; | ¢;;; for
1=1,2,....,n—1.
In othe hands, by Proposition [5.1| we refer that an element a € H in the
form
a = t1t2t3 . tn,

where elements ty,ts,t3,...,t, € Sqf H satisfy the condition ¢; | ¢;;; for
1=1,2,...,n—1, can be presented in the form

n
n’

a=818585...58

where elements s1, s9,...,s, € Sqf H satisfy the condition s; rprs; for i,j €
{1,2,...,n}, i # 7.
(d)=(e) Consider a € H, b € Sqf H such that a | b" for some n € N and
ab € M. Let a = $182...8,, where s1,89,...,8, € Sqf H, s; | s;41 for
i=1,2,...,m—1.

Notice, for i = 1,2,...,m we have s; | a. By assumption we have a | b,
hence s; | b". In particular s,, | b". Of course H is a factorial monoid, so
Sqf H = Gpr H. Since s, | b", then s,, | b, because s, € Gpr H. We have
$182...8mb=ab € M. By (d) we get s1,82,...,8m,b € M, soa,be M.

(e)=(d) Let sys9...s, € M, where sq,...,s, € Sqf H satisfy the condition
Si|sippfori=1,...,n—1.

Put a = s1s9...5,-1, b=5,. Then
S1 ’ S9, S2 ‘ S3, ..., Sp—1 ‘ Sn-

Hence s185...8,1 | s77L, i.e. a|b" L. By (e) we have s155...5,_1 € M and
Sp € M.

Put a = s189...5,-9, b=5,_1. Then

S1 | 52, 52 | 83y « -y Sn—2 | Sp—1-

Hence s189...8, 2 | s772 i.e. a|b" 2 By (e) we have s155...5, 2 € M and
Sp_1 € M.

Repeating this process we get s,,, Sp_1, Sp_2, ..., S2, S1 € M. ]

In Propositionwe found the factorial condition: a?b € M = a,ab € M
for every a € H, b € Sqf H, which implies the condition Irr M C Sqf H. But
from Example [9.2] we know this condition is not necessary. That means the
condition Irr M C Sqf H it is generally not equivalent to factorial factorial
condition but ,,behaves well” with respect to different square-free factoriza-
tions.
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