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Abstract

We discuss various square-free and radical factorizations and ex-
istence of some divisors in commutative cancellative monoids in the
context of: atomicity, ascending chain condition for principal ideals,
a pre-Schreier property, a greatest common divisor property and a
greatest common divisor for sets property. We also discuss the ana-
logues of Jacobian conditions and their relationship to square-free and
radical factorizations.

1 Introduction

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }.

Throughout this paper by a monoid we mean a commutative cancellative
monoid.

Let H be a monoid. We denote by H∗ the group of all invertible elements
of H.

If a, b ∈ H are relatively primes in H, i.e. do not have a common invertible
divisor of H, then we write a rpr b. Therefore, if M be a submonoid of H
and elements a, b ∈ M are relatively primes in M , then we write a rprM b.

Keywords: monoid, factorization, square-free element, radical generator, atom, Jacobian
conjecture.
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If a, b ∈ H satysfying the condition a = ub, where u ∈ H∗, then we
write a ∼ b. Therefore, if M be a submonoid of H and elements a, b ∈ M
satysfying a = ub, where u ∈ H∗, then we write a ∼M b.

The set of all irreducible elements (atoms) of H will be denoted by IrrH.
Recall that an element a ∈ H is called square-free if it cannot be presented
in the form a = b2c, where b, c ∈ H and b /∈ H∗. The set of all square-free
elements of H we will denote by Sqf H.

In Theorem 8.1 we present a full characterization of submonoids M of
the factorial monoid H satisfying the condition

(1) Sqf M ⊂ Sqf H

assuming M∗ = H∗.

The equivalence of (1) and

(2) for every a ∈ H, b ∈ Sqf H, if a2b ∈ M , then a, b ∈ M

in [4] has been extended to the equivalence of 8 conditions. Two of these
conditions represent a closure with respect to the 1s and 3s factorization
(See section 4), while the closure with respect to 3s was obtained at an
earlier stage of the research and published in [2].

In addition, we received a full description of such submonoids (of factorial
monoid) satisfying the condition (1). They are (with an accuracy to the in-
vertible elements) free submonoids generated by any set of pairs of relatively
primes non-invertible square-free elements.

It also turned out (Theorem 8.1) that the condition

(3) IrrM ⊂ Sqf H

is equivalent to the conjunction of (1) and

(4) for every a, b ∈ M , if a rprM b, then a rprH b.

We have a transparent answer to the question of when the condition (1)
be equivalent to the condition (3) (See Theorem 8.1).

A very important step in the conducted research was finding a factorial
condition (Theorem 9.3) implicating the condition (3):

(5) for every a ∈ H, b ∈ Sqf H, if a2b ∈ M , then a, ab ∈ M .

2



A natural question arose, is it a necessary condition. The answer is neg-
ative – a counterexample was found (Example 9.2). The factorial condition
to (3) is interesting, five equivalent conditions were obtained (Theorem 9.3),
including closure with respect to the factorization of 2s (See section 4).

Conditions (1) and (3) are related to the assumption found in the famous
Jacobian conjecture.

Conjecture 1.1. Let k be a field of characteristic 0. For every polynomials
f1, f2, . . . , fn ∈ k[x1, . . . , xn] with n > 1, if

jac(f1, f2, . . . , fn) ∈ k \ {0},

then
k[f1, . . . , fn] = k[x1, . . . , xn].

Recall a generalization of the Jacobian conjecture formulated in [4].

Conjecture 1.2. Let k be a field characteristic 0. For every polynomials f1,
f2, . . . , fr ∈ k[x1, . . . , xn] with n > 1 and r ∈ {2, . . . , n}, if

gcd(jacf1,f2,...,frxj1
,xj2

,...,xjr
, 1 ⩽ j1 < · · · < jr ⩽ n) ∈ k \ {0},

then

k[f1, . . . , fr] is algebraically closed in k[x1, . . . , xn].

Under the assumption that f1, f2, . . . , fr are algebraically independent
over k, the generalized Jacobian condition (assumption of Conjecture 1.2) is
equivalent to any of the following ones ([4]):

(6) every irreducible of k[f1, . . . , fr] is square-free in k[x1, . . . , xn],

(7) every square-free of k[f1, . . . , fr] is square-free in k[x1, . . . , xn].

Conditions (1) and (3) are a generalization of conditions (6) and (7)
(because (1), (3) are monoid-version) and therefore we call them the analogs
of the Jacobian conditions.

A side effect of the presented approach was a natural question about
general relationships between square-free factorizations in different classes of
monoids. Of course, these factorizations for rings of polynomials are com-
monly known, and it is clear that their existence and uniqueness occur in
domains with uniqueness of distribution, so e.g. certain properties hold in
GCD-domains. However, these relationships have not been studied so far. In
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this paper we consider pre-Schreier monoids, GCD-monoids, GCDs-monoids,
ACCP-monoids, atomic monoids.

Recall that a monoid is called GCD-monoid, if for any two elements there
exists a greatest common divisor. A monoid H is called GCDs-monoid, if
there exists greatest common divisor for any subset of H. A monoid H is
called a pre-Schreier monoid, if any element a ∈ H is primal, i.e. for any b,
c ∈ H such that a | bc there exist a1, a2 ∈ H such that a = a1a2, a1 | b and
a2 | c. A monoid H is called atomic, if every non-invertible element a ∈ H
be a finite product of irreducibles (atoms). A monoid H is factorial, if each
non-invertible element can be written as a product of irreducible elements
and this representation is unique. A monoid H is called ACCP-monoid if
any ascending sequence principal ideals of H stabilizes. Recall that every
factorial monoid is ACCP-monoid, and ACCP-monoid is atomic ([8]). And
recall that every factorial monoid is GCDs-monoid, then GCD-monoid. And
GCD-monoid is pre-Schreier ([8]). Since every pre-Schreier is AP-monoid (in
such monoid an irreducible element (atom) is prime), then every atomic and
AP-monoid is factorial.

In section 5 we examine the dependencies between square-free factoriza-
tions, conditions of existence of certain square-free divisors, and between
square-free factorizations and conditions of existence of certain square-free
divisors. The conditions for the existence of certain square-free divisors re-
sult from the appropriate factorization, and the condition for the existence of
a square-free divisor in a square plays an important role in reasoning about
the inclusions (1) and (3).

In this context, the concept of a radical generator is very important intro-
duced by A. Reinhart in 2012 in [6]. The element of monoid is called radical
if the principal ideal is generated by this element be a radical ideal. The set
of all radical generators of a monoid H will be denoted by GprH. Reinhart’s
explores the properties of radically factorial monoids, i.e. such that each el-
ement is a product of radical generators. He does not consider various types
of radical factorization, nor relationships with square-free factorization. Let
us add that the property of the radical generator (although the author does
not use this name) appeared in the work of G. Angermüller published in 2017
in the Grauert-Remmert normality criterion ([1], Proposition 31).

The radical generator is square-free, so radical factorizations are square-
free factorizations. Therefore, in the section 5 we also study general relation-
ships between radical factorizations, conditions of existence of certain radical
divisors, as well as between factorizations and conditions of existence of some
divisors (square-free or radical).
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In sections 4 and 5 we present the latest results, which include the rela-
tionships between 8 factorization and 16 conditions for the existence of the
divisor.

2 Auxiliary statements

In this section we present lemmas that we will need later in this paper.

Lemma 2.1. Let H be a monoid.

(a) Let a ∈ Sqf H and b ∈ H. If b | a then b ∈ Sqf H.

(b) Let a ∈ GprH and b ∈ H. If b | a then b ∈ GprH.

Proof. (a) Suppose b /∈ Sqf H. Then there exists d ∈ H \H∗ such that d2 | b.
Hence d2 | a. A contradiction.

(b) Let a ∈ GprH and b | a. Let c ∈ H and b | cn for some n ∈ N. By
assumption we have a = bd, where d ∈ H. Then a | cndn and this implies
a | cd, so b | c.

Lemma 2.2. Let H be a monoid. If a ∈ Sqf H and a = b1b2 . . . bn, then
bi rpr bj for i, j ∈ {1, . . . , n}, i ̸= j.

Proof. Suppose bi and bj have a common non-invertible divisor d for some
i, j ∈ {1, . . . , n}. Hence a = b1b2 . . . bn is not square-free because d2 | a.

Lemma 2.3. Let H be a pre-Schreier monoid.

(a) Let a, b, c, d ∈ H. If ab = cd, a rpr c and b rpr d, then a ∼ d and b ∼ c.

(b) Let a1, a2, . . . , an, b ∈ H. If ai rpr b for i = 1, 2, . . . , n, then a1a2 . . . an rpr b.

(c) Let a, b ∈ H. If a rpr b, then ak rpr bl for any k, l ∈ N.

(d) Let a1, a2, . . . , an ∈ H. If a1, a2, . . . , an ∈ Sqf H and ai rpr aj for
i, j ∈ {1, 2, . . . , n}, i ̸= j, then a1a2 . . . an ∈ Sqf H.

(e) Let a1, a2, . . . , an ∈ Sqf H, b ∈ H. If ai rpr aj for i, j ∈ {1, 2, . . . , n},
i ̸= j and ai | b for i = 1, 2, . . . , n, then a1a2 . . . an | b.

(f) Let a, b1, . . . , bn ∈ H. If a | b1 . . . bn, then there exist a1 . . . an ∈ H such
that a = a1 . . . an and ai | bi for i = 1, . . . , n.
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Proof. (a) Assume that ab = cd, a rpr c and b rpr d. If a = 0 and H is not a
group, then c ∈ H∗, so d = 0 and then b ∈ H∗.

Now, let a, d ̸= 0. Since a | cd and a rpr c, we have a | d. Similarly, since
d | ab and d rpr b, we obtain d | a. Hence, a ∼ d, and then b ∼ c.

(b) Induction. Let ai rpr b for i = 1, . . . , n + 1. Put a = a1 . . . an. Assume
that a rpr b. Let c ∈ H be a common divisor of aan+1 and b. Since c | aan+1,
there exist c1, c2 ∈ H such that c1 | a, c2 | an+1 and c = c1c2. We see that
c1, c2 | b, so c1, c2 ∈ H∗, and then c ∈ H∗.

(c) Let a, b ∈ H. Assume a rpr b. Then by (b) we get ak rpr b for any k ∈ N.
And again by (b) we have ak rpr bl for any l ∈ N.

(d) Induction. Take a1, . . . , an+1 ∈ Sqf H such that ai rpr aj for i ̸= j. Put
a = a1 . . . an. Assume that a ∈ Sqf H. Let aan+1 = b2c for some b, c ∈ H.

Since c | aan+1, there exist c1, c2 ∈ H such that c = c1c2, c1 | a and
c2 | an+1, so a = c1d and an+1 = c2e, where d, e ∈ H. We obtain de = b2. By
(b) we have a rpr an+1, so d rpr e. And then by (c), there exist b1, b2 ∈ H
such that d ∼ b21, e ∼ b22 and b = b1b2. Since a, an+1 ∈ Sqf H, we infer
b1, b2 ∈ H∗, so b ∈ H∗.

(e) Induction. Assume the assertion for n. Consider a1, . . . , an, an+1 ∈ Sqf H,
ai rpr aj for i ̸= j, and b ∈ H such that ai | b for i = 1, . . . , n + 1. Put
a = a1 . . . an. Then, by induction hypothesis, a | b, so b = ac for some c ∈ H.
Moreover, a rpr an+1 by (b). Since an+1 | ac we obtain an+1 | c, and then
aan+1 | ac.
(f) Simple induction.

In the following Proposition we have a very important property in a pre-
Schreier monoid.

Proposition 2.4. Let H be a pre-Schreier monoid. Then

GprH = Sqf H.

Proof. Let a ∈ Sqf H. Assume that a | bn for some b ∈ H and n ∈ N. Then,
by Lemma 2.3 (f), there exist a1, . . . , an ∈ H such that a = a1 . . . an and
ai | b for i = 1, . . . , n. Observe that a1 . . . an ∈ Sqf H and ai rpr aj for i ̸= j,
by Lemma 2.2, so a1 . . . an | b by Lemma 2.3 (e).

Lemma 2.5. Let H be a GCDs-monoid and a ∈ H. Let X ⊂ H be any
non-empty subset of set of divisors of a. Then there is GCD(X).
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Proof. Let Y = {d ∈ H | ∃c ∈ X : a = cd}. Denote by e a greatest
common divisor of the set Y . Then e divides every element of the set Y , so
by definition of Y we get e | a. We have a = ef , where f ∈ H. We will show
f = GCD(X).

First we prove that f is least common multiple of elements of the set X.
Consider any element c ∈ X. Since c | a, then a = cd, where d ∈ H. We
have d ∈ Y , so d = eg, where g ∈ H. Thus, since d = eg, then cd = ceg, and
since ef = a = cd, then ef = ceg. Then f = cg, so c | f .

Now, we will show that every least common multiple of elements of X is
the multiple of element f . Consider any element c ∈ X such that a = cd, d ∈
Y . We know that c | h, so cd | hd, hence a | hd. Let Z = {bh, b ∈ Y }. Then
we have GCD(Z) = h · GCD(Y ) = he. Since a | hl, then a | eh. We know
a = ef , hence ef | eh, so f | h.

Lemma 2.6. Let H be a monoid and X ⊂ GprH. Assume that there exists
GCD(X). Then LCM(X) ∈ GprH.

Proof. Denote l = LCM(X). Consider any element b ∈ H such that l | bn
for some n ∈ N. Since l is the least common multiple of set X, then for any
c ∈ X we have c | l. Then c | bn. Because c ∈ GprH, so c | b. Then l | b.

3 Square-free elements in a quotient monoid

and a group of fractions

Proposition 3.1. Let H be a monoid. Then Sqf H ⊂ Sqf G, where G is a
group of fractions of H.

Proof. Since G is a group, then Sqf G = G. If H ⊂ G and a ∈ Sqf H, then
a ∈ G = Sqf G.

Proposition 3.2. Let H be a monoid. Then Sqf H/I ⊂ Sqf H for some
ideal I of H.

Proof. Assume a ∈ Sqf H/I and suppose a /∈ Sqf H. Then a = b2c, where
b ∈ H \H∗, c ∈ H. Since a /∈ H∗, then a ∈ I for some ideal I of H. Hence
a + I = b2c + I = 0 + I. A contradiction.

Proposition 3.3. Let H be a monoid. Then Sqf H ⊂ Sqf H[X].

Proof. Suppose that s /∈ Sqf H[X]. Then s = f 2g, where f ∈ H[X] \ H,
g ∈ H[X]. Hence s ∈ H[X] \H, so s /∈ Sqf H.
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4 Types of square-free and radical factoriza-

tions and conditions for the existence of

some divisors

In this chapter we consider the relationship between square-free and rad-
ical factorizations and the conditions for the existence of some square-free or
radical divisors in some monoids.

The following properties of the monoid H are paired: the square-free ver-

sion and the radical version, for example in 0s / 0r the fragment ,,s1, s2, . . . , sn

∈ Sqf H/GprH” we read that for property 0s we have ,,s1, s2, . . . , sn ∈
Sqf H”, and for property 0r we have ”s1, s2, . . . , sn ∈ GprH”.

Let H be a monoid. Consider the following conditions:

0s / 0r for every a ∈ H there exist n ∈ N and s1, s2, . . . , sn ∈ Sqf H/GprH
such that

a = s1s2 . . . sn,

1s / 1r for every a ∈ H there exist n ∈ N and s1, s2, . . . , sn ∈ Sqf H/GprH
satysfying the condition si rpr sj for i, j ∈ {1, 2, . . . , n}, i ̸= j such that

a = s1s
2
2s

3
3 . . . s

n
n,

2s / 2r for every a ∈ H there exist n ∈ N and s1, s2, . . . , sn ∈ Sqf H/GprH
satysfying the condition si | si+1 for i = 1, . . . , n− 1 such that

a = s1s2 . . . sn,

3s / 3r for every a ∈ H there exist n ∈ N0 and s0, s1, . . . , sn ∈ Sqf H/GprH
such that

a = s0s
2
1s

22

2 . . . s2
n

n ,

4s / 4r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH satysfying
the condition b rpr c such that

a = bc

and there exists d ∈ Sqf H/GprH such that d2 | b and b | dn for some n ∈ N,

4.1s / 4.1r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH

satysfying the condition b rpr c such that

a = bc
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and for every d ∈ Sqf H/GprH, if d | b then d2 | b,

4.2s / 4.2r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH

satysfying the condition b rpr c such that

a = bc

and there exists d ∈ Sqf H/GprH such that d2 | b,

5s / 5r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH such that

a = bc

and a | cn for some n ∈ N,

5.1s / 5.1r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH such

that
a = bc

and for every d ∈ Sqf H/GprH, if d | a then d | c,

5.2s / 5.2r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH such

that
a = bc

and for every d ∈ Sqf H/GprH, if d | b then d | c,

5.3s / 5.3r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH such

that
a = bc

and there exists d ∈ Sqf H/GprH such that d | cn for some n ∈ N,

6s / 6r for every a ∈ H there exist b ∈ H and c ∈ Sqf H/GprH such that

a = b2c.

5 Relationships between square-free

and radical factorizations

In this section we consider relationships between square-free and radical
factorizations and conditions for the existence of some divisors.

Proposition 5.1. Let H be a monoid.
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(a) The following implications holds:

0s

⇐ ⇐

1s ⇐ 2s ⇒ 3s

⇓ ⇓
5s 6s

4.1s ⇐ 5.1s

⇓ ⇓

4s ⇒ 4.2s ⇐ 5.2s

⇓

5.3s

(b) The following implications holds:

0r

⇐ ⇒

1r ⇐ 2r ⇒ 3r

⇓ ⇓
4r ⇐ 5r ⇒ 6r

⇓ ⇓

4.1r ⇐ 5.1r

⇓ ⇓

4.2r ⇐ 5.2r

⇓

5.3r

(c) The following implications holds:

0r 1r 2r 3r 4r 5r 6r

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
0s 1s 2s 3s 4s 5s 6s
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Proof. (a)

2s ⇒ 1s Put tn = s1. Since s1 | s2, then s2 = s1tn−1 = tntn−1 for
some tn−1 ∈ H. Since s2 | s3, then s3 = s2tn−2 = tntn−1tn−2 for some
tn−2 ∈ H. Generally, we get si = si−1tn−i+1 = tntn−1 . . . tn−i+1, where
tn, tn−1, . . . , tn−i+1 ∈ H for i = 2, 3, . . . , n. Hence

a = s1s2 . . . sn = tn(tntn−1)(tntn−1tn−2) . . . (tntn−1tn−2 . . . t2t1) =

= tnnt
n−1
n−1t

n−2
n−2 . . . t

2
2t1.

Since sn = tntn−1 . . . t2t1, then from Lemma 2.1 we refer t1, t2, . . . , tn ∈
Sqf H/ GprH. While from Lemma 2.2 we get ti rpr tj for i ̸= j.

2s ⇒ 3s From 2s ⇒ 1s we can present an element a in the form a =
u1u

2
2u

3
3 . . . u

n
n, where u1, u2, . . . , un ∈ Sqf H/GprH satysfying the condition

ui rpruj for i, j ∈ {1, 2, . . . , n}, i ̸= j, where sn−i+1 = sn−iui for i ∈
{1, 2, . . . , n− 1} and un = s1. Then

n∏
k=1

uk
k =

n∏
k=1

u
∑r

i=0 c
(k)
i 2i

k =
n∏

k=1

r∏
i=0

u
c
(k)
i 2i

k =
r∏

i=0

( n∏
k=1

u
c
(k)
i
k

)2i
.

Denote ti =
∏n

k=1 u
c
(k)
i
k for i = 0, 1, . . . r. Because ui rpruj for i ̸= j, so

from Lemma 2.2 we have ti ∈ Sqf H. Therefore a = t0t
2
1t

22

2 . . . t2
r

r , where

k =
∑r

i=0 c
(k)
i 2i for k = 1, 2, . . . , n and c

(k)
i ∈ {0, 1}.

2s ⇒ 5s Because

s1 | sn, s2 | sn, . . . , sn−1 | sn, sn | sn,

hence s1s2 . . . sn | snn, so a | cn for c = sn. Of course a = bc, where b =
s1s2 . . . sn−1.

3s ⇒ 6s , 4s ⇒ 4.2s , 4.1s ⇒ 4.2s – Obvious.

5.1s ⇒ 4.1s Let a = bc, where b ∈ H, c ∈ Sqf H, b rpr c and let d ∈ Sqf H

such that d | b. Since d | b, then d | a. By assumption we have d | c. Since
d | b, d | c, then d ∈ H∗ because b rpr c. Since d ∈ H∗ and d | b, then d2 | b.

5.2s ⇒ 4.2s Since a = bc, where b ∈ H, c ∈ Sqf H such that b rpr c, and

d | b ⇒ d | c, we get d ∈ H∗, and then d2 | b.
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5.1s ⇒ 5.2s Let d ∈ Sqf H such that d | b. Then d | a and by assumption

we get d | c.

5.2s ⇒ 5.3s Let a = bc, where b ∈ H, c ∈ Sqf H. Let d ∈ Sqf H satisfies

an implication d | b ⇒ d | c. Then
∏

d∈Sqf H
d|b

for some n ∈ N. There exists

d′ ∈ Sqf H satisfies d′ | b such that d′ |
∏

d∈Sqf H
d|b

d | cn. We get d′ | cn.

(b)

4r ⇒ 4.1r Let e ∈ GprH be such that e | b. By assumption we have b | dn,

hence e | dn, because e | b. But e ∈ GprH, so from the fact that e | dn we
have e | d, thus e2 | d2. By assumption we have d2 | b, so e2 | b.

5r ⇒ 4r Let a = bc, where b ∈ H, c ∈ GprH such that a | cm for some
m ∈ N. By assumption we can b presented in the form b = de, where d ∈ H,
e ∈ GprH such that b | ek for some k ∈ N.

Since e | b, b | a and a | cm, then e | cm. But e ∈ GprH, so e | c
by definition. Then c = ef , where f ∈ H. By Lemma 2.1 we refer that
f ∈ GprH, and from Lemma 2.2 we have e rpr f . From equation b = de we
have be = de2. We get a = bef , where e2 | be and be | ek+1.

Now we will prove that be rpr f . From divisibilities d | be, be | ek+1 and
ek+1 | ck+1 we have d | ck+1 and f | c, c | ck+1, so f | ck+1. In other hand we
have df | bef , bef | a and a | cl for some l ∈ N, so df | cl. Hence since d | ck,
f | cl, df | cl, then d rpr f . And since e rpr f , then be rpr f .

5r ⇒ 5.1r Let d ∈ GprH be such that d | a. Since d | a and by assumption

a | cn, then d | cn. Because d ∈ GprH, so d | c.

5r ⇒ 6r Let a = bc, where b ∈ H, c ∈ GprH. Since b | a and a | cn for
some n ∈ N, then cn = bc′ for some c′ ∈ H. Hence c′ | cn. Since c′ | cn, then
c′ | c, i.e. c = c′c′′, c′ rpr c′′, where c′′ ∈ Sqf H.

We have an = bncn = bnbc′ = bn+1c′ and an = bncn = bnc′nc′′n. Then
b = c′n−1c′′n. We get a = bc = c′nc′′n+1 = (c′c′′)nc′′.

If n = 2k, then a = (c′kc′′k)2c′′. If n = 2k + 1, then a = (c′kc′′k+1)2c′.

(c) The proof comes from the fact that every radical generator is a square-
free.
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Let’s define another class of monoid. A monoid H is called SR-monoid,
if GprH = Sqf H. Therefore it is enough to consider square-free properties.

Proposition 5.2. Let H be a SR-monoid. Then

(a) the following implications hold:

0s

⇐ ⇒

1s ⇐ 2s ⇒ 3s

⇓ ⇓
4s ⇐ 5s ⇒ 6s

⇓ ⇓

4.1s ⇐ 5.1s

⇓ ⇓

4.2s ⇐ 5.2s

⇓

5.3s

(b) the following equivalences hold:

Ar ⇔ As

for A ∈ {0, 1, 2, 3, 4, 4.1, 4.2, 5, 5.1, 5.2, 5.3, 6}.

Proof. (a) Since H is a SR-monoid, so every implications from Proposition
5.1 (b) hold.

(b) Obvious.

Since in pre-Schreier monoids, GCD-monoids and GCDs-monoids the SR
property holds, therefore in the following three Propositions it is enough to
consider square-free dependencies.

Proposition 5.3. Let H be a pre-Schreier monoid. Then

(a) the following implications and equivalences hold:

13



0s

⇐ ⇒

1s ⇔ 2s ⇒ 3s

⇓ ⇓ ⇓
4s ⇔ 5s ⇒ 6s

⇓ ⇓

4.1s ⇔ 5.1s

⇓ ⇓

4.2s ⇔ 5.2s

⇓

5.3s

(b) if the condition 2s holds, then H be GCD-monoid.

Proof. (a)

1s ⇒ 2s An element a can be written in the form

a = sn(sn−1sn)(sn−2sn−1sn) . . . (s2s3 . . . sn)(s1s2s3 . . . sn).

Put: ti = sn−i+1sn−i+2 . . . sn−1sn for i = 1, 2, . . . , n. Because s1, s2, . . . ,
sn ∈ Sqf H and si rpr sj for i ̸= j so from Lemma 2.3 (e) we have t1, t2, . . . ,
tn ∈ Sqf H. Of course ti | ti+1 for i = 1, 2, . . . , n− 1.

1s ⇒ 4s Put b = s22s
3
3 . . . s

n
n and c = s1. From the fact that s1, s2, . . . , sn are

pairwise relatively prime results b rpr c from Lemma 2.3 (d). Moreover for
d = s2s3 . . . sn we have d2 | b, b | dn. Because si rpr sj for i, j ∈ {2, 3, . . . , n},
i ̸= j, so from Lemma 2.3 (e) we have d ∈ Sqf H.

4s ⇒ 5s Assume a = bc, where b ∈ H, c ∈ Sqf H such that b rpr c and
b = d2e, b | dm, where d ∈ Sqf H and m ∈ N. Then a = d2ec = (de)(cd).
Since d | b, b rpr c, then d rpr c, so cd ∈ Sqf H by Lemma 2.3 (d). We get also
that since b | dm, then bc | dmc, and because dmc | (cd)m, so a | (cd)m.

4.1s ⇒ 5.1s Let a = bc, where b ∈ H, c ∈ Sqf H such that b rpr c. Let

d ∈ Sqf H such that d | b. By assumption d2 | b, i.e. b = d2g for some g ∈ H.
Hence a = bc = d2gc = ef , where e = dg, f = dc. Since d | b, b rpr c, then
d rpr c.

14



By Lemma 2.3 (d) we have cd = f ∈ Sqf H. Let d′ ∈ Sqf H such that
d′ | a. Then d′ | ef and hence d′ | e or d′ | f .

If d′ | f , then end of proof. If d′ | e, then d′ | dg and hence d′ | d2g, then
d′ | b. Since d′ | b and b rpr c, then d′ ∤ c, d′ | d. We get d′ | cd, so d′ | f .

4.2s ⇒ 5.2s Let d ∈ Sqf H. We have b = d2g for some g ∈ H. We get

a = bc = d2gc = ef , e = dg, f = dc. Since d | b, b rpr c, then d rpr c. Since
c, d ∈ Sqf H, c rpr d, then by Lemma 2.3(d) we have cd = f ∈ Sqf H. Since
d | dg, then d | dc.

The other implications hold from Proposition 5.1.

(b) Since every square-free element of a pre-Schreier monoid is radical, it
follows from [5], Corollary 4.5, that every pre-Schreier monoid that satisfies

property 2s has to be a GCD-monoid. Note that the notion of a GCD-
monoid is equivalent to the notion of a t-Bézout monoid in [5]. Therefore,

if H is a pre-Schreier monoid that satisfy property 2s , then every principal
ideal of H is a product of finitely many pairwise comparable radical principal
ideals of H, and hence H is a t-Bézout monoid (i.e., a GCD-monoid) by [5],
Corollary 4.5.

Proposition 5.4. Let H be a GCD-monoid. Then the following implications
and equivalences hold:

0s

⇔ ⇔

1s ⇔ 2s ⇔ 3s

⇓ ⇓ ⇓
4s ⇔ 5s ⇒ 6s

⇓ ⇓

4.1s ⇔ 5.1s ⇒

⇓ ⇓

4.2s ⇔ 5.2s

⇓

5.3s

Proof. 0s ⇒ 2s Since every square-free element in the GCD-monoid is rad-
ical and any element a ∈ H can be presented as a = s1s2 . . . sn, where s1, s2,
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. . . , sn ∈ Sqf H, then from the Theorem 3.10 from [5] we conclude that in
every radical factorial GCD-monoid any radical r-finitely generated r-ideal
of H is principal. And from the Corollary 4.5 from [5] we get that every
principal ideal is a product of a finite number of pairwise principal ideals.

6s ⇒ 4.2s Let a = b2c, where b ∈ H, c ∈ Sqf H. Let d = GCD(b, c).

We have b = db′, c = dc′, where c′, d ∈ Sqf H, b′ rpr c′, d rpr c′. We get
a = (d3b′2)c′ and d2 | d3b′2.
The other implications and equivalences hold from Proposition 5.3.

Proposition 5.5. Let H be a GCDs-monoid. Then the condition 5.1s holds.

Proof. Let a ∈ H and X = {d ∈ Sqf H; d | a}. From Lemma 2.5 there exists
LCM(X). Let c = LCM(X). By Lemma 2.6 we get that c ∈ Sqf H. Since
every element belonging to X divides a, the c | a. Hence a = bc for some
b ∈ H. Consider any d ∈ Sqf H such that d | a. But d ∈ X, hence d | c,
because c = LCM(X).

Note that in an atomic monoid the 0s property holds and an implication

5s ⇒ 5.3s holds. Indeed, let a = q1q2 . . . qn, where qi ∈ IrrH ⊂ Sqf H.

Then for some i we have qi | a, a | cn. Then qi | cn.

Proposition 5.6. Let H be an ACCP-monoid. Then

(a) the conditions 0s , 3s and 6s hold,

(b) the following implicatios and equivalences hold:

0s

⇐ ⇒

1s ⇐ 2s ⇔ 3s

⇑ ⇐ ⇐

4.1s ⇐ 5.1s 5s 6s

⇓ ⇓ ⇐

4.2s ⇐ 5.2s

⇑ ⇓

4s 5.3s
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(c) the following implicatios and equivalences hold:

0r

⇐ ⇒

1r ⇐ 2r ⇔ 3r

⇕ ⇕
4r ⇐ 5r ⇔ 6r

⇓ ⇕

4.1r ⇐ 5.1r

⇓ ⇕

4.2r ⇐ 5.2r

⇓

5.3r

Proof. (a)

Any ACCP-monoid is atomic. Then 0s holds.

If a ∈ Sqf H, then put c = a and b = 1.

Now, assume a /∈ Sqf H. Then a = b21c1, where b1 ∈ H \H∗, c1 ∈ H. If
c1 ∈ Sqf H, then put b = b1, c = c1.

Now, assume c1 /∈ Sqf H. Then c1 = b22c2, where b2 ∈ H \H∗, c2 ∈ H.

We continue this process until ck ∈ Sqf H for some k ∈ N. Then

a = b21c1 = b21b
2
2c2 = b21b

2
2b

2
3c3 = · · · = (b1b2 . . . bk)2ck.

Of course, this process has to stop. 6s holds.

Consider any element a ∈ H. Since 6s holds, then there exist b1 ∈ H,
c1 ∈ Sqf H such that a = b21c1. Again, the element b1 can be written in the
form b1 = b22c2, where b2 ∈ H, c2 ∈ Sqf H. Similarly, we can introduce the
element b2 in the form b2 = b23c3, where b3 ∈ H, c3 ∈ Sqf H. Continuing this
reasoning, we obtain an ascending sequence of principal ideals ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂ . . .

From ACCP-condition there exists k ∈ N such that

(bk) = (bk+1) = (bk+2) = . . .

17



In particular (bk) = (bk+1), i.e. bk ∼ bk+1. Then from bk = b2k+1ck+1 we refer
bk+1, ck+1 ∈ H∗. Since bk ∼ bk+1 and bk+1 ∈ H∗, then bk ∈ H∗.

Then

a = b21c1 = b2
2

2 c22c1 = b2
3

3 c2
2

3 c22c1 = · · · = b2
k

k c1c
2
2c

22

3 . . . c2
k−1

k = s0s
2
1s

22

2 . . . s2
n

n ,

where s0 = c1, s1 = c2, s2 = c3, . . . , sn−1 = ck, sn = bk. 3s holds.

(b)

5.1s ⇒ 2s Consider any element a ∈ H. We can presented element a in the

form a = b1c1, where b1 ∈ H, c1 ∈ Sqf H and for every d ∈ Sqf H, if d | a,
then d | c.

We can presented element b1 in the form b1 = b2c2, where b2 ∈ H, c2 ∈
Sqf H and for every d ∈ Sqf H, if d | b1, then d | c2.

An element b2 we can presented in the form b2 = b3c3, where b3 ∈ H,
c3 ∈ Sqf H and for every d ∈ Sqf H, if d | b2, then d | c3.

Continuing, we get an ascending sequence of principal ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂ . . . .

Then by ACCP condition there exists m ∈ N such that

(bn) = (bn+1) = (bn+2) . . . .

In particular (bk) = (bk+1), so bk ∼ bk+1. Because bk = bk+1ck+1, hence
ck+1 ∈ H∗. we know that for any element d ∈ Sqf H, if d | bk, then d | ck+1.
But ck+1 ∈ H∗, hence since d | bk, then d ∈ H∗.

We have

a = b1c1 = b2c2c1 = · · · = bkckck−1 . . . c1 = ckck−1 . . . c1,

because bk ∈ H∗. We show that for every i = 2, 3, . . . k the divisibiity ci | ci−1

holds. For i = 2 we have c2 | b1, because b1 = b2c2. Since c2 | b1, then c2 | a.
Then by the assumption c2 | c1. For i = 3, 4, . . . we know that for every
element bi−1 we can presented in the form bi−1 = bici, hence ci | bi−1. We
also know that bi−1 | bi−2. And hence ci | bi−2. By the assumption we have
for any element d ∈ Sqf H, if d | bi−2, then d | ci−1, so since ci | bi−2, then
ci | ci−1, because ci ∈ Sqf H.

6s ⇒ 3s Consider any element a ∈ H. The element a can be presented in
the form a = b21c1, where b1 ∈ H, c1 ∈ Sqf H/GprH.
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An element b1 can be presented in the form b1 = b22c2, where b2 ∈ H,
c2 ∈ Sqf H/GprH. Similarly, we can presented an element b2 in the form
b2 = b23c3, where b3 ∈ H, c3 ∈ Sqf H/GprH.

By continuing this process, we obtain an ascending sequence of principal
ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂
By ACCP condition there exists k ∈ N such that bk ∼ bk+1. And because

bk = b2k+1ck+1, hence bk+1, ck+1 ∈ H∗. Since bk ∼ bk+1 and bk+1 ∈ H∗, then
bk ∈ H∗.

Then

a = b21c1 = b2
2

2 c22c1 = b2
3

3 c2
2

3 c22c1 = · · · = b2
k

k c2
k−1

k c2
k−2

k−1 . . . c22c1 =

= s0s
2
1s

22

2 . . . s2
n

n ,

where s0 = c1, s1 = c2, s2 = c3, . . . , sn−1 = ck, sn = bk.

5.2s ⇒ 5s

Consider any element a ∈ H. We can introduced the element a in the
form a = b1c1, where b1 ∈ H, c1 ∈ Sqf H and an implication d | b1 ⇒ d | c1
holds for every d ∈ Sqf H.

An element b1 can be presented in the form b1 = b2c2, where b2 ∈ H,
c2 ∈ Sqf H and an implication d | b2 ⇒ d | c2 holds for every d ∈ Sqf H.
Next, we have b2 = b3c3, and so on.

For any n ∈ N we have an equation bn = bn+1cn+1, where bn+1 ∈ H,
cn+1 ∈ Sqf H and an implication d | bn+1 ⇒ d | cn+1 holds.

By ACCP assumption we have bncn ∼ bn+1cn+1. Since bn = bn+1cn+1,
then cn ∈ H∗. Since d | bn ⇒ d | cn and cn ∈ H∗, then d ∈ H∗. We get
Sqf H = H∗.

Since a = bncncn−1 . . . c1, then a | cn1 .

(c)

5r ⇒ 2r
Consider any element a ∈ H. We can introduced the element a in the

form a = b1c1, where b1 ∈ H, c1 ∈ GprH and a | cn1
1 holds for some n1 ∈ N.

An element b1 can be presented in the form b1 = b2c2, where b2 ∈ H,
c2 ∈ GprH and b1 | cn2

2 holds form some n2 ∈ N.

An element b2 can be presented in the form b2 = b3c3, where b3 ∈ H,
c3 ∈ GprH and b2 | cn3

3 holds for some n3 ∈ N.
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Continuing our reasoning we get an increasing sequence of principal ideals

(b1) ⊂ (b2) ⊂ (b3) ⊂ . . .

By ACCP condition there exists n such that

(bn) = (bn+1) = (bn+2) = . . . .

In particular (bn) = (bn+1), so bn ∼ bn+1. And because bn = bn+1cn+1, so
cn+1 ∈ H∗. There is also divisibility bn | cmn+1

n+1 , hence bn ∈ H∗.

Then we get

a = b1c1 = b2c2c1 = b3c3c2c1 = · · · = bncncn−1 . . . c2c1 = s1s2 . . . sn,

where s1 = bncn, s2 = cn−1, s3 = cn−2, . . . , sn = c1.

It remained to prove that for i = 1, 2, . . . , n − 1 the condition ci+1 | ci
holds. For i = 1 we have divisibilities c2 | b1, b1, b1 | a, a | cm1

1 , hence c2 | c1,
because c2 ∈ GprH. For i > 1 divisibilities ci+1 | bi, bi | bi−1, bi−1 | cmi

i holds,
and hence ci+1 | ci. Since ci+1 ∈ GprH, then ci+1 | ci.

6r ⇒ 5r Consider any element a ∈ H. An element a ∈ H can be presented
in the form a = b21c1, where b1 ∈ H, c1 ∈ GprH.

An element b1c1 can be presented in the form b1c1 = b22c2, where b2 ∈ H,
c2 ∈ GprH. Similarly, we can presented an element b2c2 in the form b2c2 =
b23c3, where b3 ∈ H, c3 ∈ GprH.

By repeating the process, we obtain the following ascending sequence of
principal ideals

(b1c1) ⊂ (b2c2) ⊂ (b3c3) ⊂ . . .

By ACCP condition there exists k ∈ N such that

(bkck) = (bk+1ck+1) = (bk+2ck+2) = . . .

In particular (bkck) = (bk+1ck+1), so bkck ∼ bk+1ck+1. From the equation
bkck = b2k+1ck+1 and from bkck ∼ bk+1ck+1 we get bk+1 ∈ H∗.

We have the following divisibility:

ck+1 | bkck, bkck | bk−1ck−1, . . . , b2c2 | b1c1, b1c1 | a.
Therefore, since a = b21c1, then a | (b1c1)

2. Since b1c1 = b22c2, then b1c1 |
(b2c2)

2. Generally for i = 2, 3, . . . , k we have bk−1ck−1 | (bkck)2. Hence
a | (bkck)2

k
. Since bkck ∼ ck+1, then a | c2kk+1.

5.2r ⇒ 5r

The proof is similar to 5.2s ⇒ 5s in (b).

The other implications hold from Proposition 5.1.
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6 Unique representation

In this section, we present the unique presentation of the factorizations
and the conditions of existence of square-free and radical divisors.

Proposition 6.1. Let H be a monoid.

(a) Consider any elements s1, s2, . . . , sn, t1, t2, . . . , tn ∈ GprH, such that
si | si+1 and ti | ti+1, for i = 1, 2, . . . , n− 1. If

r1r2 . . . rn ∼ t1t2 . . . tn,

then ri ∼ ti for i = 1, . . . , n.

(b) Consider any elements a, c ∈ H, b, d ∈ GprH, such that a | bm and
c | dn for some m,n ∈ N. If

ab ∼ cd,

then a ∼ c and b ∼ d.

(c) Consider any elements a, c ∈ H, b, d ∈ GprH, such that for any e ∈
GprH implications hold: if e | ab, then e | b and if e | cd, then e | d. If

ab ∼ cd,

then a ∼ c and b ∼ d.

Proof. (a) Assume s1s2 . . . sn ∼ t1t2 . . . tn. From assumption we have:

t1 | t2, t2 | t3, . . . , tn−1 | tn.

Then

t1 | tn, t2 | tn, . . . , tn−1 | tn, tn | tn,

hence t1t2 . . . tn | tnn. Since sn | t1t2 . . . tn, then sn | tnn. Because sn ∈ GprH,
then from definition we get sn | tn. We justify analogically tn | sn. Hence
sn ∼ tn and then s1 . . . sn−1 ∼ t1 . . . tn−1.

Repeating the above reasoning for s1 . . . sn−1 ∼ t1 . . . tn−1 we get sn−1 ∼
tn−1 and s1s2 . . . sn−2 ∼ t1t2 . . . tn−2.

Continuing, we get si ∼ ti for i = 1, 2, . . . , n.

b) Assume ab ∼ cd. We notice b | cd, and since c | dn, so b | dn+1. Because
b ∈ GprH, then from definition we refer b | d. Similarly, we justify divisibility
d | b. Therefore b ∼ d, and then a ∼ c.
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(c) Assume ab ∼ cd. We notice that b ∈ GprH and b | cd, so b | d by
assumption. Similarly, we justify divisibility d | b. Hence b ∼ d, and then
a ∼ c.

Proposition 6.2. Let H be a pre-Schreier monoid. Consider any elements
s1, . . . , sn, t1, . . . , tn ∈ Sqf H such that si rpr sj and ti rpr tj for i, j ∈
{1, 2, . . . , n}, i ̸= j. If

s1s
2
2s

3
3 . . . s

n
n ∼ t1t

2
2t

3
3 . . . t

n
n,

then si ∼ ti for i = 1, . . . , n.

Proof. Assume s1s
2
2s

3
3 . . . s

n
n ∼ t1t

2
2t

3
3 . . . t

n
n. Put s′i = si . . . sn, t′i = ti . . . tn for

i = 1, 2, . . . , n. Then s′1s
′
2 . . . s

′
n = s1s

2
2s

3
3 . . . s

n
n and t′1t

′
2 . . . t

′
n = t1t

2
2t

3
3 . . . t

n
n,

so
s′1s

′
2 . . . s

′
n ∼ t′1t

′
2 . . . t

′
n.

Because si rpr sj and ti rpr tj for i, j ∈ {1, 2, . . . , n}, i ̸= j, hence from Lemma
2.3 (e) we refer s′i = sisi+1 . . . sn, t

′
i = titi+1 . . . tn ∈ Sqf H for i = 1, 2, . . . ,

n. Since s′i+1 | s′i and t′i+1 | t′i for i = 1, 2, . . . , n − 1, then from Proposition
6.1 (a) we get s′i ∼ t′i for i = 1, 2, . . . , n, so sisi+1 . . . sn ∼ titi+1 . . . tn. Since
sisi+1 . . . sn ∼ titi+1 . . . tn and si+1 . . . sn ∼ ti+1 . . . tn, so si ∼ ti for i =
1, 2, . . . , n. Moreover s′n ∼ t′n, i.e. sn ∼ tn.

Proposition 6.3. Let H be a GCD-monoid.

(a) Consider any elements a, c ∈ H, b, d ∈ Sqf H, such that a rpr b, c rpr d
and for some elements e, f ∈ Sqf H and m,n ∈ N divisibilities e2 | a,
a | em and f 2 | c, c | fn hold. If

ab ∼ cd,

then a ∼ c, b ∼ d.

(b) Consider any elements a, c ∈ H, b, d ∈ Sqf H, such that a rpr b, c rpr d
and for any g ∈ Sqf H the implication holds: if g | a, then g2 | a. If

ab ∼ cd,

then a ∼ c, b ∼ d.

(c) Consider any elements a, c ∈ H and b, d ∈ Sqf H. If

a2b ∼ c2d,

then a ∼ c and b ∼ d.
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(d) Consider any elements s0, s1, . . . , sn ∈ Sqf H and t0, t1, . . . , tn ∈ Sqf H.
If

s2
n

n s2
n−1

n−1 . . . s21s0 ∼ t2
n

n t2
n−1

n−1 . . . t21t0,

then si ∼ ti for i = 0, 1, . . . , n.

Proof. (a) Assume ab ∼ cd. Put g = GCD(d, e). Since d ∈ Sqf H, then by
Lemma 2.1 we have g ∈ Sqf H, because g | d. Since g | e, then g2 | e2, and
hence g2 | a, because e2 | a. Since g2 | a and a | cd, so g2 | cd. Let us remind
g | d, then g2 | d2. Since g2 | cd, g2 | d2 and c rpr d, hence by Lemma we refer
g2 | GCD(cd, d2), so g2 | d. Because d ∈ Sqf H, so g ∈ H∗. Then d rpr e,
because g is their greatest common divisor. Therefore by Lemma 2.3 (c) we
refer d rpr em, and hence d rpr a, because a | em. Similarly, we justify that
b rpr c putting h = GCD(b, f) and we repeat the reasoning. Then by Lemma
2.3 (a) we have a ∼ c, b ∼ d.

(b) Assume ab ∼ cd. Put g = GCD(a, d). Since d ∈ Sqf H, then by Lemma
2.1 we have g ∈ Sqf H, because g | d. Since g | a, then g2 | a by the
assumption. Hence g2 | cd. Let us remind g | d, then g2 | d2. Since g2 | cd,
g2 | d2 and c rpr d, hence we refer g2 | GCD(cd, d2), so g2 | d. Because
d ∈ Sqf H, so g ∈ H∗. Then a rpr d, because g is their greatest common
divisor. Because d | ab, hence d | b. Similarly, we justify that b rpr c putting
h = GCD(b, c) and we repeat the reasoning. Then by Lemma 2.3 (a) we have
a ∼ c, b ∼ d.

(c) Assume a2b ∼ c2d. Put e = GCD(a, c) oraz f = GCD(b, d). Let a = ea0,
c = ec0, where a0, c0 ∈ H and a0 rpr c0. Let b = fb0 and d = fd0, where
b0, d0 ∈ H and b0 rpr d0.

We get a2b = e2a20fb0 and c2d = e2c0fd0. Since a2b ∼ c2d, then e2a20fb0 ∼
e2c0fd0, so a20b0 ∼ c20d0. From Lemma 2.3 (e) since a0 rpr c0, then a20 rpr c20.
We have d0 | a20b0 and b0 rpr d0, so from Lemma 2.3 (a) we get d0 | a20.
Similarly we have a20 | c20d0 and a20 rpr c20, so from Lemma 2.3 (a) we get
a20 | d0. Hence a20 ∼ d0. We show analogously that b0 ∼ c20.

Since b0 | b, d0 | d and b, d ∈ Sqf H, then from Lemma 2.1 we refer
b0, d0 ∈ Sqf H. But b0 ∼ c20 and d0 ∼ a20, so b0, d0 ∈ Sqf H. And from
a20 ∼ d0, c

2
0 ∼ b0 we have a0, c0 ∈ H∗. Then we get a ∼ e, c ∼ e, so a ∼ c.

Analogously we get b ∼ f , d ∼ f , so b ∼ d.

(d) Assume s2
n

n s2
n−1

n−1 . . . s21s0 ∼ t2
n

n t2
n−1

n−1 . . . t21t0, where s0, s1, . . . , sn, t0, t1,
. . . , tn ∈ Sqf H.

Then (s1s
2
2 . . . s

2n−1

n )2s0 ∼ (t1t
2
2 . . . t

2n−1

n )2t0. From (c) we get s0 ∼ t0 and
s1s

2
2 . . . s

2n−1

n ∼ t1t
2
2 . . . t

2n−1

n .
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Again using (c) for s1s
2
2 . . . s

2n−1

n = (s2s
2
3 . . . s

2n−2

n )2s1 ∼ t1t
2
2 . . . t

2n−1

n =
(t2t

2
3 . . . t

2n−2

n )2t1 we get s1 ∼ t1 and s2s
2
3 . . . s

2n−2

n ∼ t2t
2
3 . . . t

2n−2

n . By repeat-
ing the reasoning we get si ∼ ti for i = 0, 1, . . . , n.

7 Some examples

Example 7.1. Let
H = N⩾k ∪ {0}.

For any k ∈ N0 determine the set

Hk = {(x, y) ∈ N2
0 : x + y = k}.

For any r ∈ N consider the following submonoid of H:

H(r) =
⋃
k∈N0

Hkr.

Then H(r) is a ACCP-monoid and

Sqf H(r) = {(0, 0), (0, r), (1, r − 1), . . . , (r − 1, 1), (r, 0), (1, 2r − 1), (3, 2r −
3), . . . , (2r − 1, 1)}.

For radical generators we have:
For r = 1 we have GprH(r) = {(0, 0), (0, 1), (1, 0)}.
For r = 2 we have GprH(r) = {(0, 0), (1, 1)}.
For r ⩾ 3 we have GprH(r) = {(0, 0)}.

For r = 1 All conditions are met.

For r > 1 the monoid H(r) conditions: 0s, 1s, 2s, 3s, 4s, 5s, 6s, 4.1r, 4.2r,
5.1r, 5.2r, 5.3r are met. The other conditions are not met.

Example 7.2. For some k ∈ N let H = Q⩾k ∪ {0}.

All quotient numbers of interval [k, 2k) and 0 are square-free.

A monoid H is GCD-monoid. It sufficient put GCD(a, b) = min{a, b} for all
a, b ∈ H.

In the monoid H all conditions are met.
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Example 7.3. Let H = N2
0. We have H∗ = {(0, 0)}, i.e. H is a reduced

monoid.

For any k ∈ N0 determine a set

Hk = {(x, y) ∈ N2
0 : x + y = k}.

Then H =
⋃

k∈N0
Hk.

For any r ∈ N consider the following submonoid of H:

H(r) =
⋃
k∈N0

Hkr.

Of course H(r) is a reduced monoid (as a submonoid of a reduced monoid)
and

H(r) = ⟨(0, r), (1, r − 1), . . . , (r − 1, 1), (r, 0)⟩.

For odd x and k = 2 elements (x, kr − x) are square-free. Of course (0, 0)
also is square-free.

A submonoid of free-monoid is a monoid with finite factorial. In particular
H is an ACCP-monoid.

In the monoid H conditions: 0s, 1s, 2s, 3s, 4s, 4.1r, 4.2r, 5s, 5.1r, 5.2r, 5.3r,
6s are met. The conditions 0r, 1r, 2r, 3r, 4r, 4.1s, 4.2r, 5r, 5.1s, 5.2s, 5.3s, 6r
are not met.

Example 7.4. Let H be a monoid, not a group such that every element of

H be a square. In particular Q⩾0 and
〈 1

2n
| n ∈ N

〉
. In the monoid H the

condition 6s is met. The others are not met.

Example 7.5. Consider a submonoid of free monoid

H = ⟨x1, x2, . . . , y1, y2, · · · | yi = xp
i+1y

q
i+1, i = 1, 2, . . . ⟩,

where p, q ∈ N. Then H is a non-factorial GCD-monoid for any p, q.

If p = q = 1, then in the H all conditions are met, in particular, it is non-
atomic monoid satysfying 2s.

If q is even, then in the H 6s is met, and no one of 0s–5.3s and 0r–6r.

If q is odd and (p, q) ̸= (1, 1), then H satisfies no one of the conditions 0s/0r
– 6s/6r.
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8 The condition about square-free elements

in a submonoid

In this section we introduce results about condition Sqf M ⊂ Sqf H, where
M is a submonoid of the monoid H.

Let’s recall that by F(B) we denote a free monoid with basis B, where
B ⊂ H is a subset.

Theorem 8.1. Let H be a factorial monoid. Let M ⊂ H be a submonoid
such that M∗ = H∗. The following conditions are equivalent:

(a) Sqf M ⊂ Sqf H,

(b) IrrM ⊂ Sqf H and for every a, b ∈ M the following implication holds:

a rprM b ⇒ a rprH b,

(c) IrrM ⊂ Sqf H and for every a, b ∈ IrrM the following implication
holds:

a ≁M b ⇒ a rprH b,

(d) M = H∗ × F(B), where B is an any set of pairwise relatively prime
square-free non-units (of H),

(e) for every s1, s2, . . . , sn ∈ Sqf H, such that si rprH sj dla i, j ∈ {1, 2, . . . , n},
i ̸= j the following implication holds:

s1s
2
2s

3
3 . . . s

n
n ∈ M ⇒ s1, s2, . . . , sn ∈ M,

(f) for every q1, q2, . . . , qn ∈ IrrM such that qi ̸∼H qj for i, j ∈ {1, 2, . . . , n},
i ̸= j, the following implication holds:

qk11 . . . qknn ∈ M ⇒ q
c
(1)
i

1 . . . q
c
(n)
i

n ∈ M,

where kj = c
(j)
r 2r + . . . + c

(j)
0 20 for j = 1, 2, . . . , n with c

(j)
i ∈ {0, 1} for

i = 0, 1, . . . , r,

(g) for every s0, s1, . . . , sn ∈ Sqf H the following implication holds:

s0s
2
1s

22

2 . . . s2
n

n ∈ M ⇒ s0, . . . , sn ∈ M,

(h) for every a ∈ H and b ∈ Sqf H the following implication holds:

a2b ∈ M ⇒ a, b ∈ M.
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Proof. First, we notice H is a BF-monoid (bounded factorization monoid),
because is a factorial monoid. Submonoid M satisfies M∗ = H∗∩M , so M is
also an BF-monoid ([7], Corollary 1.3.3, s. 17). In particular, M is an atomic
monoid.

(a)⇒(c) Assume Sqf M ⊂ Sqf H. Since IrrM ⊂ Sqf M , then IrrM ⊂ Sqf H.

We show that if a, b are not relatively primes, then a ≁M b. Suppose
that there exist a, b ∈ IrrM such that a ≁M b and a, b are not relatively
primes in H. Then t = GCDH(a, b) ∈ H \ H∗, so a = tu, b = tv for some
u, v ∈ H, u rprH v. Since a, b ∈ IrrM , then a, b ∈ Sqf H, but u |H a, v |H b,
so u, v ∈ Sqf H, and then uv ∈ Sqf H, because u rprH v (Lemma 2.3 (d))

We have ab = t2uv ̸∈ Sqf H, because t ∈ H \H∗. Hence by assumption
ab ̸∈ Sqf M , i.e. ab = c2d for some c ∈ M \ M∗, d ∈ M . We can assume
that c ∈ M \M∗ is minimal and satisfies the following properties: ”there are
a, b, d ∈ H such that c |H a, b and ab = c2d ”. We have c2d = t2uv, where
uv ∈ Sqf H, so c |H t, because H is factorial, and then t = cw for some
w ∈ H.

We get a = tu = cwu, so uv ∈ Sqf H because a ∈ Sqf H. We have
ac = c2wu ̸∈ Sqf H, so ac ̸∈ Sqf M , hence ac = e2h for some e ∈ M \ M∗,
h ∈ M . Since e2h = c2wu, where wu ∈ Sqf H, we refer e |H c, because
e2h = c2wu, a = cwu, so e2h = ac, and then e |H c. Next, we have also
e |H cwu, then e |H a. We get e |H a, c and ac = e2h, so e ∼H c from minimal
of c. Then e ∼M c, because M∗ = H∗. But ac = e2h, so a ∼M eh ∼M ch.
Then a ∼M c because a ∈ IrrM and c ∈ M \M∗.

Similarly we show b ∼M c, so a ∼M b, a contradiction.

(b)⇒(c) It sufficient to notice that for every a, b ∈ IrrM the following
implication holds

a ≁M b ⇒ a rprM b.

Because, if a, b ∈ IrrM and a ∼M b, then from (b) we have a rprH b. Hence,
if a, b ∈ IrrM are not relatively primes in M , then a = cd and b = ce for
some c ∈ M \M∗, d, e ∈ M . Because a, b are irreducible in M and c is non-
ivertible, then d, e ∈ M∗. So, from a = cd, b = ce we get a ∼M c, b ∼M c.
We have a ∼M b.

(c)⇒(b) Consider elements a, b ∈ M such that a rprM b. We know that M
is an atomic monoid. Let a = a1 . . . am and b = b1 . . . bn be factorizations
to irreducible elements in M . Since a rprM b, then for every i, j we have
ai ≁M bj, so ai rprH bj, but then a rprH b.

(c)⇒(d) Let B be a maximal (with respect to inclusion) set of pairwise
non-associative (in M) irreducibles in M . By (c) we refer that elements from

27



B are pairwise relatively prime in H. Since H is a factorial monoid, then B
generates a free submonoid. Because M is atomic and M∗ = H∗, then from
[7] Theorem 1.2.3.2. we get M = H∗ ×B.

(d)⇒(e) Let a = s1s
2
2s

3
3 . . . s

n
n ∈ M , where s1, . . . , sn ∈ Sqf H, si rprH sj for

i ̸= j. By (d) an element a can be presented in the form a = ct1t
2
2t

3
3 . . . t

m
m,

where c ∈ H∗, ti =
∏ri

j=1 b
(i)
j ∈ M , ri ∈ N0, m ≥ n and b

(i)
j ∈ B such that

b
(i)
j ̸= b

(i)
k for j ̸= k. Since b

(i)
j are square-free and pairwise relatively primes

in H, then t1, . . . , tm are also square-free, because in a factorial monoid the
product of parwise relatively primes square-free is a square-free (Lemma 2.3

(d)). We refer that if b
(i)
j are pairwise relatively primes, then t1, . . . , tm are

pairwise relatively primes in H. By Proposition 6.2 we get si ∼H ti for i = 1,
2, . . . , n. Since si ∼H ti and ti ∈ M , then si ∈ M .

(e)⇒(f) Let a = qk11 . . . qknn ∈ M , where q1, . . . , qn ∈ IrrH, qi ̸∼H qj for i ̸= j,
and k1, . . . , kn ∈ N0. Put m = max(k1, . . . , kn). For l = 1, . . . ,m let’s denote
sl =

∏
j : kj=l qj. Since q1, . . . , qn ∈ IrrH, then q1, . . . , qn ∈ Sqf H.

We show that since qi ̸∼H qj for i ̸= j, then qi rprH qj. Suppose that qi,
qj are not relatively primes H, i.e. there exists c ∈ H \ H∗ and there exist
d, e ∈ H such that qi = cd, qj = ce. But qi, qj ∈ IrrH, so d, e ∈ H∗. Hence
qi ∼ c, qj ∼ c, so qi ∼ qj.

Since qi rprH qj for i, j ∈ {1, 2, . . . , n}, i ̸= j, then s1, s2, . . . , sm ∈ Sqf H.
By definition sl for l = 1, 2, . . . , m we get si rprH sj, where i, j ∈ {1, 2, . . . , n},
i ̸= j. Then we have a = s1s

2
2 . . . s

m
m, so s1, s2, . . . , sm ∈ M by (e).

Now, let kj = c
(j)
r 2r+. . .+c

(j)
0 20 for j = 1, 2, . . . , n, where c

(j)
i ∈ {0, 1} for

i = 0, . . . , r. We notice that if kj1 = kj2 , then c
(j1)
r 2r + . . .+ c

(j1)
0 20 = c

(j2)
r 2r +

. . .+ c
(j2)
0 20, i.e. c

(j1)
i = c

(j2)
i for some i ∈ {0, 1, . . . , r}. Let’s denote d

(l)
i = c

(j)
i

for all j such that kj = l, where l = 1, 2, . . . , m. Then q
c
(1)
i

1 . . . q
c
(n)
i

n =

s
d
(1)
i

1 . . . s
d
(m)
i

m ∈ M .

(h)⇒(g) Let s0, . . . , sn ∈ Sqf H such that s0s
2
1s

22

2 . . . s2
n

n ∈ M . By induction
we prove, with respect to n, if s0s

2
1s

22

2 . . . s2
n

n ∈ M , then s0, . . . , sn ∈ M . For
n = 1 is obvious. Assume that this implication is true for any n ∈ N. Let
s0s

2
1s

22

2 . . . s2
n

n ∈ M . Then s0s
2
1s

22

2 . . . s2
n

n = (s1s
2
2s

22

3 . . . s2
n−1

n )2s0. By (h) we
get s1s

2
2s

22

3 . . . s2
n−1

n , s0 ∈ M .

Since s1s
2
2s

22

3 . . . s2
n−1

n ∈ M , then s1s
2
2s

22

3 . . . s2
n−1

n = (s2s
2
3s

22

4 . . . s2
n−2

n )2s1.
By (h) we have s2s

2
3s

22

4 . . . s2
n−2

n , s1 ∈ M .

Continuiyng this process we have s0, s1, . . . , sn ∈ M .

(g)⇒(h) Consider a ∈ H, b ∈ Sqf H. Let a = s2
n

n . . . s21s0, where s0, . . . , sn ∈
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Sqf H. If a2b = s2
n+1

n . . . s2
2

1 s20b ∈ M , then sn, . . . , s1, s0, b ∈ M by (g), and
then a = s2n . . . s

2
1s0 ∈ M .

(f)⇒(g) Let s0, s1, . . . , sn ∈ Sqf H. Assume s0s
2
1s

22

2 . . . s2
n

n ∈ M . We

can write si = uiq
c
(1)
i

1 . . . q
c
(m)
i

m , where ui ∈ H∗, q1, . . . , qm ∈ IrrH such that

qj ̸∼H ql for j ̸= l i c
(j)
i ∈ {0, 1}. Then s0s

2
1s

22

2 . . . s2
n

n =
∏n

i=0(u0q
c
(1)
0

1 )2
i

=

u0u
2
1u

22

2 . . . u2n

n · qk11 . . . qkmm , where kj = c
(j)
n 2n + . . . + c

(j)
1 2 + c

(j)
0 . By assump-

tion, if qk11 . . . qkmm ∈ M , then q
c
(1)
i

1 . . . q
c
(m)
i

m ∈ M for i = 1, 2, . . . , n. Hence
s0, . . . , sn ∈ M .

(g)⇒(f) Let qk11 . . . qknn ∈ M , where q1, . . . , qn ∈ IrrH, qj ̸∼H ql for j, l ∈
{1, 2, . . . , n}, j ̸= l. Put kj = c

(j)
r 2r+. . .+c

(j)
1 2+c

(j)
0 for j = 1, 2, . . . , n, where

c
(j)
i ∈ {0, 1}. Let si = q

c
(1)
i

1 . . . q
c
(n)
i

n . By assumption, since s0s
2
1s

22

2 . . . s2
n

n ∈ M ,

then s0, s1, . . . , sn ∈ M . Hence q
c
(1)
i

1 . . . q
c
(n)
i

n ∈ M for i = 0, 1, . . . , r.

(h)⇒(a) Consider an element r ∈ Sqf R. Suppose that r ̸∈ Sqf H, so r = x2y
for some x, y ∈ H such that x ̸∈ H∗ and y ∈ Sqf H. Since x2y ∈ M , then we
get x, y ∈ M . We have x ̸∈ M∗, so x2y ̸∈ Sqf M , a contradiction.

Let M be a submonoid of factorial monoid H. From Theorem 8.1 we
know that the condition Sqf M ⊂ Sqf H is equivalent to IrrM ⊂ Sqf H and
a rprM b ⇒ a rprH b for every a, b ∈ M . Hence the condition IrrM ⊂ Sqf H
is equivalent to Sqf M ⊂ Sqf H, when for every a, b ∈ M since a rprM b then
a rprH b.

9 The condition about irreducible elements

in a submonoid

In this section we introduce results about condition IrrM ⊂ Sqf H, where
M is a submonoid of the monoid H.

In Proposition 9.1 we find a factorial condition which implies the inclusion
IrrM ⊂ Sqf H.

Proposition 9.1. Let H be a monoid which satisfies the condition 6s. Let M
be a submonoid of H. Assume that for every a ∈ H, b ∈ Sqf H the following
implication holds

a2b ∈ M ⇒ a, ab ∈ M.

Then IrrM ⊂ Sqf H.
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Proof. Suppose that there exists some c ∈ IrrM such that c /∈ Sqf H. Then
c = a2b for some a ∈ H and b ∈ Sqf H. By assumption, since a2b ∈ M ,
then a, ab ∈ M . We notice a /∈ H∗, because c /∈ Sqf H, so a, ab /∈ H∗. And
since a, ab /∈ H∗, then a, ab /∈ M∗ – a contradiciton with the assumption
a(ab) ∈ IrrM .

An example 9.2 shows that in the Proposition 9.1 a factorial condition
which implies IrrM ⊂ Sqf H is not a necessary condition.

Example 9.2. Consider a monoid H = N3
0 and its submonoid

M = ⟨(1, 1, 0), (1, 0, 1)⟩.

Then IrrM = {(1, 1, 0), (1, 0, 1)}, so IrrM ⊂ Sqf H, but for

a = (1, 0, 0) ∈ H, b = (0, 1, 1) ∈ Sqf H

we have

2a + b = (2, 0, 0) + (0, 1, 1) = (2, 1, 1) = (1, 1, 0) + (1, 0, 1),

so 2a + b ∈ M . Therefore a /∈ M and a + b = (1, 1, 1) /∈ M .

A factorial condition which implies IrrM ⊂ Sqf H, i.e. for every a ∈ H,
b ∈ Sqf H if a2b ∈ M then a, ab ∈ M is very interesting and we show next
results for this factorial condition.

Theorem 9.3. Let H be a factorial monoid. Let M ⊂ H be a submonoid
such that M∗ = H∗. The following conditions are equivalent:

(a) for every a ∈ H and b ∈ Sqf H the following implication holds

a2b ∈ M ⇒ a, ab ∈ M,

(b) for every s0, s1, . . . , sn ∈ Sqf H, if

s0s
2
1s

22

2 . . . s2
n

n ∈M,

then

sn, sn−1sn, sn−2sn−1s
2
n, sn−3sn−2s

2
n−1s

22

n , . . . , s0s1s
2
2s

22

3 . . . s2
n−1

n ∈ M,

(c) for every s1, s2, . . . , sn ∈ Sqf H such that si rprH sj for i, j ∈ {1, 2, . . . , n},
i ̸= j, the implication holds

s1s
2
2s

3
3 . . . s

n
n ∈ M ⇒ sn, sn−1sn, sn−2sn−1sn, . . . , s1s2 . . . sn ∈ M,
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(d) for every s1, s2, . . . , sn ∈ Sqf H, such that si | si+1 for i = 1, 2, . . . ,
n− 1, the implication holds

s1s2 . . . sn ∈ M ⇒ s1, s2, . . . , sn ∈ M,

(e) for every a ∈ H and b ∈ Sqf H such that a | bn for some n ∈ N, the
implication holds

ab ∈ M ⇒ a, b ∈ M.

Proof. (a)⇒(b) Consider elements s0, s1, . . . , sn ∈ Sqf H such that s0s
2
1s

22

2

. . . s2
n

n ∈ M . Since
(
s1s

2
2s

22

3 . . . s2
n−1

n

)2
s0 ∈ M , then from (a) we get:

s1s
2
2s

22

3 . . . s2
n−1

n ,
(
s1s

2
2s

22

3 . . . s2
n−1

n

)
s0 ∈ M.

Next, since
(
s2s

2
3s

22

4 . . . s2
n−2

n

)2
s1 ∈ M , then from (a) we get

s2s
2
3s

22

4 . . . s2
n−2

n ,
(
s2s

2
3s

22

4 . . . s2
n−2

n

)
s1 ∈ M.

Continuing, since
(
sn−1s

2
n

)2
sn−2 ∈ M , then from (a) we get:

sn−1s
2
n, sn−1s

2
2sn−2 ∈ M.

Since s2nsn−1 ∈ M , then from (a) we get sn−1, sn ∈ M .

From all steps we have:(
s1s

2
2s

22

3 . . . s2
n−1

n

)
s0,

(
s2s

2
3s

22

4 . . . s2
n−2

n

)
s1, . . . , sn−1s

2
nsn−2, snsn−1, sn ∈ M.

(b)⇒(a) Consider a ∈ H, b ∈ Sqf H such that a2b ∈ M . A monoid H
is factorial, so an element a can be written in the form a = s1s

2
2s

22

3 . . . s2
n−1

n ,
where si ∈ Sqf H for i = 1, . . . , n. Put s0 = b. Then we get:

s0s
2
1s

22

2 . . . s2
n

n = a2b ∈ M.

By assumption we have

s0s1s
2
2s

22

3 . . . s2
n−1

n , s1s2s
2
3s

22

4 . . . s2
n−2

n , . . . , sn−2sn−1s
2
n, sn−1sn, sn ∈ M.

Notice ab = s0s1s
2
2s

22

3 . . . s2
n−1

n , so ab ∈ M . Moreover

a = s1s
2
2 . . . s

2n−1

n =

= sn(sn−1sn)
(
sn−2sn−1s

2
n

)(
sn−3sn−2s

2
n−1s

22

n

)(
sn−4sn−3s

2
n−2s

22

n−1s
23

n

)
. . .(

s2s3s
2
4s

22

5 . . . s2
n−1

n

)(
s1s2s

2
3s

22

4 . . . s2
n−2

n

)
,
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so a ∈ M .

(b)⇒(c) Denote by ⌈x⌉ and ⌊x⌋ upper part (ceiling) and bottom part (floor)
of real number x.

Step I. First, we prove that if s1s
2
2s

3
3 . . . s

n
n ∈ M , where s1, s2, . . . , sn ∈

Sqf H, si rprH sj for i ̸= j, then s1s2s
2
3s

2
4 . . . s

⌈n
2
⌉

n , s2s3s
2
4s

2
5 . . . s

⌊n
2
⌋

n ∈ M.

Let a = s1s
2
2s

3
3 . . . s

n
n ∈ M , where s1, . . . , sn ∈ Sqf H, si rprH sj for i ̸= j.

Then an element a can be written in the form a = t0t
2
1t

22

2 . . . t2
r

r , where ti =

s
c
(1)
i
1 . . . s

c
(n)
i
n ∈ Sqf H, i = 0, . . . , r and k =

∑r
i=0 c

(k)
i 2i, where c

(k)
i ∈ {0, 1},

k = 0, 1, . . . , n (see proof of 2s ⇒ 3s , Proposition 5.1).

From (b) we have

t0t1t
2
2t

22

3 . . . t2
r−1

r t1t2t
2
3t

22

4 . . . t2
r−2

r , . . . , tn−2tn−1t
2
n, tn−1tn, tn ∈ M .

Then

t1t
2
2t

22

3 . . .t2
r−1

r =

=(t1t2t
2
3t

22

4 . . . t2
r−2

r )(t2t3t
2
4t

22

5 . . . t2
r−3

r ) . . . (tr−2tr−1t
2
r)(tr−1tr)tr ∈ M.

From definition of exponents c
(j)
i we have

s1s2s
2
3s

2
4 . . . s

⌈n
2
⌉

n = t0t1t
2
2 . . . t

2r−1

r ∈ M,

s2s3s
2
4s

2
5 . . . s

⌊n
2
⌋

n = t1t
2
2t

22

3 . . . t2
r−1

r ∈ M.

Step II. Now, we prove that if s1s
2
2s

3
3 . . . s

n
n ∈ M , where s1, . . . , sn ∈ Sqf H,

si rprH sj for i ̸= j, then s1s2s3 . . . sn, s2s
2
3s

3
4 . . . s

n−1
n ∈ M.

Assume s1s
2
2s

3
3 . . . s

n
n ∈ M , where s1, . . . , sn ∈ Sqf H, si rprH sj for i ̸= j.

We prove by induction with respect to l that

s
⌈ 1

2l
⌉

1 s
⌈ 2

2l
⌉

2 . . . s
⌈n−1

2l
⌉

n−1 s
⌈ n

2l
⌉

n , s
1−⌈ 1

2l
⌉

1 s
2−⌈ 2

2l
⌉

2 . . . s
n−1−⌈n−1

2l
⌉

n−1 s
n−⌈ n

2l
⌉

n ∈ M.

Let q = ⌈ n
2l
⌉. Then (q − 1)2l < n ≤ q2l. Put

s′i = s(i−1)2l+1s(i−1)2l+2 . . . si2l

for i = 1, . . . , q − 1 and s′q = s(q−1)2l+1s(q−1)2l+2 . . . sn.

Notice s′1, s
′
2, . . . , s

′
q ∈ Sqf H and s′i rprH s′j for i ̸= j, because s1, . . . , sn ∈

Sqf H, si rprH sj for i ̸= j.
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We have

s
⌈ 1

2l
⌉

1 s
⌈ 2

2l
⌉

2 . . . s
⌈n−1

2l
⌉

n−1 s
⌈ n

2l
⌉

n = s′1(s
′
2)

2 . . . (s′q)
q.

If s
⌈ 1

2l
⌉

1 s
⌈ 2

2l
⌉

2 . . . s
⌈n−1

2l
⌉

n−1 s
⌈ n

2l
⌉

n ∈ M , then by Step I we have

s
⌈ 1

2l+1 ⌉
1 s

⌈ 2

2l+1 ⌉
2 . . . s

⌈ n−1

2l+1 ⌉
n−1 s

⌈ n

2l+1 ⌉
n = s′1s

′
2(s

′
3)

2(s′4)
2 . . . (s′q)

⌈ q
2
⌉ ∈ M

and

s
⌈ 1

2l
⌉−⌈ 1

2l+1 ⌉
1 s

⌈ 2

2l
⌉−⌈ 2

2l+1 ⌉
2 . . . s

⌈ n

2l
⌉−⌈ n

2l+1 ⌉
n = s′2s

′
3(s

′
4)

2(s′5)
2 . . . (s′q)

⌊ q
2
⌋ ∈ M.

Since s
1−⌈ 1

2l
⌉

1 s
2−⌈ 2

2l
⌉

2 . . . s
n−⌈ n

2l
⌉

n ∈ M , then also

s
1−⌈ 1

2l+1 ⌉
1 s

2−⌈ 2

2l+1 ⌉
2 . . . s

n−⌈ n

2l+1 ⌉
n =

s
1−⌈ 1

2l
⌉

1 s
2−⌈ 2

2l
⌉

2 . . . s
n−⌈ n

2l
⌉

n · s
⌈ 1

2l
⌉−⌈ 1

2l+1 ⌉
1 s

⌈ 2

2l
⌉−⌈ 2

2l+1 ⌉
2 . . . s

⌈ n

2l
⌉−⌈ n

2l+1 ⌉
n ∈ M.

There exists r ∈ N such that 2r > n. Then 1 ≤ t ≤ n and we have
⌈ t
2r
⌉ = 1. Finally, we have s1s2s3 . . . sn, s2s

2
3s

3
4 . . . s

n−1
n ∈ M .

Step III. Now, we prove (c) by induction with respect to n ∈ N. For n = 1
is obvious. Assumme that the condition holds for n and consider s1, s2, . . . ,
sn, sn+1 ∈ Sqf H, si rprH sj for i ̸= j such that s1s

2
2s

3
3 . . . s

n
ns

n+1
n+1 ∈ M . By

Step II we have

s1s2s3 . . . snsn+1, s2s
2
3s

3
4 . . . s

n−1
n snn+1 ∈ M .

By inductive assumption for element s2s
2
3s

3
4 . . . s

n−1
n snn+1 we have

sn+1, snsn+1, sn−1snsn+1, . . . , s2s3 . . . snsn+1 ∈ M .

(c)⇒(b) We apply induction with respect to n. The case for n = 0 is obvious.

Assume that the condition holds for all n ∈ N, i.e., for every s0, s1, . . . , sn ∈
Sqf H, if s0s

2
1s

22

2 . . . s2
n

n ∈ M , then sn−lsn−l+1s
2
n−l+2s

22

n−l+3 . . . s2
l−2

n−1s
2l−1

n ∈ M
for every l ∈ {0, 1, . . . , n}.

We prove the condition for n + 1. Let

a = s0s
2
1s

22

2 . . . s2
n+1

n+1 ∈ M,

where s0, s1, . . . , sn+1 ∈ Sqf H. Then by Proposition 5.4, 3s ⇒ 1s element
a can be written in the form

a = t1t
2
2t

3
3 . . . t

m
m,

where m = 2n+2 − 1 and t1, . . . , tm ∈ Sqf H, ti rprH tj for i ̸= j.

By (c) we have
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tm, tm−1tm, . . . , t1t2 . . . tm ∈ M .

Notice m is odd, because m = 2n+2 − 1. Multiplying elements in the form
trtr+1 . . . tm for every odd r we get

(t1t2t3t4 . . . tm)(t3t4t5 . . . tm) . . . (tm−2tm−1tm)tm = t1t2t
2
3t

2
4 . . . t

⌈m
2
⌉

m ∈ M.

And if we multiply elements in the form trtr+1 . . . tm for even r, then we get

(t2t3t4t5 . . . tm)(t4t5t6 . . . tm) . . . (tm−1tm) = t2t3t
2
4t

2
5 . . . t

⌊m
2
⌋

m ∈ M.

Notice, since m = 2n+2 − 1, then ⌊m
2
⌋ = 2n+1 − 1. Hence

t2t3t
2
4t

2
5 . . . t

⌊m
2
⌋

m = (t2t3)(t4t5)
2 . . . t

⌊m
2
⌋

m ,

because t2t3, t4t5, . . . , tm ∈ Sqf H by Lemma 2.3 (d). From proof of Propo-

sition 5.4 1s ⇔ 3s we get

(t2t3)(t4t5)
2 . . . t

⌊m
2
⌋

m = s1s
2
2s

22

3 . . . s2
n

n+1.

By inductive assumption we have

sn−lsn−l+1s
2
n−l+2s

22

n−l+3 . . . s
2l−2

n−1s
2l−1

n ∈ M

for l ∈ {0, 1, . . . , n}. Moreover,

t1t2t
2
3t

2
4 . . . t

⌈m
2
⌉

m = (t1t2)(t3t4)
2 . . . t

⌈m
2
⌉

m ,

because t1t2, t3t4, . . . , tm ∈ Sqf H by Lemma 2.3 (d). From proof of Propo-

sition 5.4 1s ⇔ 3s we get

(t1t2)(t3t4)
2 . . . t

⌈m
2
⌉

m = s0s1s
2
2s

22

3 . . . s2
n

n+1,

i.e. the condition for l = n + 1.

(c)⇔(d) Since H is a factorial monoid, then by Proposition 5.3 we have
that an element a ∈ H in the form

a = s1s
2
2s

3
3 . . . s

n
n,

where s1, s2, . . . , sn ∈ Sqf H satisfy the condtion si rpr sj for i, j ∈ {1, 2, . . . , n},
i ̸= j, can be written in the form

a = t1t2t3 . . . tn,
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where elements t1, t2, t3, . . . , tn ∈ Sqf H satisfy the condition ti | ti+1 for
i = 1, 2, . . . , n− 1.

In othe hands, by Proposition 5.1 we refer that an element a ∈ H in the
form

a = t1t2t3 . . . tn,

where elements t1, t2, t3, . . . , tn ∈ Sqf H satisfy the condition ti | ti+1 for
i = 1, 2, . . . , n− 1, can be presented in the form

a = s1s
2
2s

3
3 . . . s

n
n,

where elements s1, s2, . . . , sn ∈ Sqf H satisfy the condition si rpr sj for i, j ∈
{1, 2, . . . , n}, i ̸= j.

(d)⇒(e) Consider a ∈ H, b ∈ Sqf H such that a | bn for some n ∈ N and
ab ∈ M . Let a = s1s2 . . . sm, where s1, s2, . . . , sm ∈ Sqf H, si | si+1 for
i = 1, 2, . . . ,m− 1.

Notice, for i = 1, 2, . . . ,m we have si | a. By assumption we have a | bn,
hence si | bn. In particular sm | bn. Of course H is a factorial monoid, so
Sqf H = GprH. Since sm | bn, then sm | b, because sm ∈ GprH. We have
s1s2 . . . smb = ab ∈ M . By (d) we get s1, s2, . . . , sm, b ∈ M , so a, b ∈ M .

(e)⇒(d) Let s1s2 . . . sn ∈ M , where s1, . . . , sn ∈ Sqf H satisfy the condition
si | si+1 for i = 1, . . . , n− 1.

Put a = s1s2 . . . sn−1, b = sn. Then

s1 | s2, s2 | s3, . . . , sn−1 | sn.

Hence s1s2 . . . sn−1 | sn−1
n , i.e. a | bn−1. By (e) we have s1s2 . . . sn−1 ∈ M and

sn ∈ M .

Put a = s1s2 . . . sn−2, b = sn−1. Then

s1 | s2, s2 | s3, . . . , sn−2 | sn−1.

Hence s1s2 . . . sn−2 | sn−2
n , i.e. a | bn−2. By (e) we have s1s2 . . . sn−2 ∈ M and

sn−1 ∈ M .

Repeating this process we get sn, sn−1, sn−2, . . . , s2, s1 ∈ M .

In Proposition 9.1 we found the factorial condition: a2b ∈ M ⇒ a, ab ∈ M
for every a ∈ H, b ∈ Sqf H, which implies the condition IrrM ⊂ Sqf H. But
from Example 9.2 we know this condition is not necessary. That means the
condition IrrM ⊂ Sqf H it is generally not equivalent to factorial factorial
condition but ,,behaves well” with respect to different square-free factoriza-
tions.
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