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Abstract. In this paper we consider all possible properties from commutative algebra
for polynomial composites and monoid domains. The aim is full characterization of
these structures. We start with the examination of group, ring, modules properties,
graded, but also study of invertible elements, irreducible elements, ideals, etc. in these
structures. In the second part of this paper we give examples of the use of composites
and monoid domains in cryptology. Each such polynomial is the sum of the products of
the variable and the coefficient. And what if subsequent coefficient sets are appropriate
cryptographic systems? Similarly, monoid domains can be a very good tool between
encrypting and decrypting messages.
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1. Introduction

By a ring we mean a commutative ring with unity. Let R be a ring. Denote by R∗

the group of all invertible elements of R. The set of all irreducible elements in R
will be denoted by IrrR. Recall that a GCD-domain is an integral domain R with
the property that any two elements have a a greatest common divisor (GCD);
i.e., there is a unique minimal principal ideal containing the ideal generated by
given two elements. We can find much informations about GCD-domains. I
refer to [6], [13], [14].

The main motivation of this paper is description of some algebraic objects
in the language of commutative algebra. D.D. Anderson, D.F. Anderson, M.
Zafrullah in [12] called object A+XB[X] as a composite for A ⊂ B fields. If B
is a domain and M is an additive cancellative monoid we can define a monoid
domain B[M ] = {a0Xm0 + · · · + anX

mn : a0, . . . , an ∈ B,m1, . . .mn ∈ M}.
Monoid domains appear in many works such that [15], [16].

There are a lot of works where composites are used as examples to show
some properties. But the most important works are presented below.

In 1976 [3] authors considered the structures in the form D + M , where
D is a domain and M is a maximal ideal of ring R, where D ⊂ R. Later
(2.1), we could prove that in composite in the form D + XK[X], where D
is a domain, K is a field with D ⊂ K, that XK[X] is a maximal ideal of
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K[X]. Next, Costa, Mott and Zafrullah ([4], 1978) considered composites in
the form D + XDS [X], where D is a domain and DS is a localization of D
relative to the multiplicative subset S. In 1988 [8] Anderson and Ryckaert
studied classes groups D + M . Zafrullah in [9] continued research on structure
D + XDS [X] but he showed that if D is a GCD-domain, then the behaviour
of D(S) = {a0 +

∑
aiX

i | a0 ∈ D, ai ∈ DS} = D + XDS [X] depends upon the
relationship between S and the prime ideals P od D such that DP is a valuation
domain (Theorem 1, [9]). Fontana and Kabbaj in 1990 ([11]) studied the Krull
and valuative dimensions of composite D+XDS [X]. In 1991 there was an article
([12]) that collected all previous composites and the authors began to create a
theory about composites creating results. In this paper, the structures under
consideration were officially called as composites. After this article, various
minor results appeared. But the most important thing is that composites have
been used in many theories as examples. That is why we decided to examine
all possible properties of composites for commutative algebra. We put the first
results in [18], and the next results we put in this article.

In the second chapter we will present a more general concept of a composite
defining two types and I(B,A), and monoid domain F [X;M ], with different
configurations of rings, domains, fields, etc. We will show some simple properties
from commutative algebra for these structures. In the Lemma 2.2 it will turn out
that one of the types of composites together with the multiplicative action can
not be a semigroup. In the Theorem 2.1 we show that every nonzero prime ideal
in the composite is the maximal ideal. We will also see what are the irreducible
elements of such composites. In the Theorem 2.2 we will look at what elements
are irreducible in the considered structures. At the end of the chapter, we will
look at the multiplicative systems of these structures.

In the third chapter we present simple observations by building on R-modules
from the considered structures (Proposition 3.1). We also asked a question
about exact sequence for composites. The next chapter is devoted to locations
in composites. In the fifth chapter, we mention graded rings and modules.

The main motivation of sixth chapter is description composites and monoid
domains in language for the monoids/gropus (for composites) and for rings (for
monoid rings).

The structures described in this paper often appear in the form of examples
in many works. The aim of this work will be to examine as much as possible
properties and applications in commutative algebra.

In last chapters of this paper I give an example of the use of composites and
monoid domains in cryptology.

2. Basic properties

The aim of this chapter will be to examine the simplest structural properties of
the considered structures.
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Consider A and B as rings such that A ⊂ B. Put T = A + XB[X]. The
structure defined in this way is called a composite. (The definition comes from
[12]). Later results will require more assumptions.

Let us generalized the concept of a composite in two different directions.
Consider A0, A1, . . . , An−1 and B be rings for any n ≥ 0 such that A0 ⊂

A1 ⊂ · · · ⊂ An−1 ⊂ B. Put Tn = A0 + A1X + · · · + An−1X
n−1 + XnB[X].

And let other A0, A1, . . . , An−1 and B be rings for any n ≥ 0 such that there
exists i ∈ {0, 1, . . . , n− 1}, where Ai ̸⊂ Ai+1 and for every j ∈ {0, 1, . . . , n− 1}
we have Aj ⊂ B. Put T ′

n = A0 + A1X + · · · + An−1X
n−1 + XnB[X]. Also,

consider I(B,A) = {f ∈ B[X], f(A) ⊆ A}, where A ⊂ B are rings and monoid
domain B[M ], where B be a domain and M be a submonoid of Q+.

Throughout the article, we will use the above denotation. If the above
structures require stronger assumptions, then of course this will be included.

It is easy to check the following Lemmas.

Lemma 2.1. Tn is a ring, Tn ⊂ T and T ′
n ⊂ T .

Lemma 2.2. If f, g ∈ T ′
n, where n > 0, then fg ∈ A0 + XB[X].

Corollary 2.1. (T ′
n, ·) is not a semigroup.

Lemma 2.3. I(B,A) is a ring.

Now, let’s look at invertible and nilpotent elements.

Proposition 2.1. Let f = a0 + a1X + · · · + anX
n ∈ T for any n ≥ 0, then

f ∈ T ∗ if and only if a0 ∈ A∗ and a1, a2, . . . , an are nilpotents.

Proof. We know that if R is a ring then f = a0 + a1X + · · · + anX
n ∈ R[X]∗

if and only if a0 ∈ R∗ and a1, a2, . . . , an are nilpotents. In our Proposition we
have a1, a2, . . . , an are nilpotents. Of course we get a0 ∈ A∗.

Proposition 2.2. Let f = a0+a1X+ . . . an−1X
n−1+anX

n+ · · ·+amXm ∈ Tn,
(T ′

n, respectively), where 0 ≤ n ≤ m and ai ∈ Ai for i = 0, 1, . . . , n and aj ∈ B
for j = n, n + 1, . . . ,m.

(i) f ∈ T ∗
n , (T

′
n
∗, respectively) if and only if a0 ∈ A∗

0 and a1, a2, . . . , am are
nilpotents.

(ii) f is a nilpotent if and only if a0, a1, . . . , am are nilpotents.

Proof. Analogous proof like in Proposition 2.1.

Proposition 2.3. Let f = a0 + a1X + · · ·+ anX
n ∈ I(B,A), where A ⊂ B are

domains.

(i) f ∈ I(B,A)∗ if and only if a0 ∈ A∗ and a1, a2, . . . , an are nilpotents.

(ii) f is nilpotent if and only if a0, a1, . . . , an are nilpotents.
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Proposition 2.4. Let B be a domain and f = am1X
m1 + am2X

m2 + · · · +
amnX

mn ∈ B[M ], where m1,m2, . . . ,mn ∈ M and am1 , am2 , . . . , amn ∈ B.

(i) f ∈ B[M ]∗ if and only if there exist mi ∈ M such that ami ∈ B∗ and
mi = 0 and for every mk ̸= mi we have amk

be nilpotents.

(ii) f be a nilpotent if and only if am1 , am2 , . . . , amn are nilpotents.

Proof. (i) Assume f ∈ B[M ]∗, then there exists g = bm′
1
Xm′

1 + bm′
2
Xm′

2 +

· · ·+ bm′
n
Xm′

n , where m′
1,m

′
2, . . . ,m

′
n ∈ M and bm′

1
, bm′

2
, . . . , bm′

n
∈ B such that

fg = 1. Hence there exist mi,mj ∈ M such that amibmjX
mi+mj = 1. We have

ai ∈ B∗ and mi,mj = 0. The rest of coefficients are nilpotents. On the other
side of the proof it is easy.

(ii) Obvious.

Let’s recall Theorem from [12] (Theorem 2.9) in a different form.

Proposition 2.5. Let A be a subfield of B. Consider D = A + XB[X], then
IrrD = {aX, a ∈ B}∪{a(1+Xf(X)), a ∈ A, f ∈ B[X], 1+Xf(X) ∈ IrrB[X]}.

Theorem 2.1. Consider T = A + XB[X], where A be a subfield of B; Tn =
A0 + A1X + A2X

2 · · · + An−1X
n−1 + XnB[X], where A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂

An−1 ⊂ B be fields. Then

(i) every nonzero prime ideal of T (Tn, respectively) is maximal;

(ii) every prime ideal P different from XB[X] (in T ) is principal;

(iii) every prime ideal P different from A1X+A2X
2+· · ·+An−1X

n−1+XnB[X]
(in Tn) is principal;

(iv) T is atomic, i. e., every nonzero nonunit of T is a finite product of irre-
ducible elements (atoms);

(v) Tn is atomic.

Proof. (i) For T we have in [12], Theorem 2.9 (i). We proof for Tn.

First note that A1X +A2X
2 + · · ·+An−1X

n−1 +XnB[X] is maximal since
Tn/A1X + A2X

2 + · · · + An−1X
n−1 + XnB[X] ∼= A0. Let P be a nonzero

prime ideal of Tn. Now, X ∈ P implies (Tn/A1X + A2X
2 + · · · + An−1X

n−1 +
XnB[X])2 ⊆ P and hence A1X + A2X

2 + · · · + An−1X
n−1 + XnB[X] ⊆ P so

P = A1X+A2X
2+· · ·+An−1X

n−1+XnB[X]. So suppose that X /∈ P , then for
N = {1, X,X2, . . . }, PN is a prime ideal in the PID B[X,X−1] = Tn,N . (In fact,
B[X,X−1] ⊆ RP and RP is a DVR (discrete valuation ring).) So P is minimal
and is also maximal unless P ⊊ A1X + A2X

2 + · · · + An−1X
n−1 + XnB[X].

But let knX
n + · · · + ksX

s ∈ P with kn ̸= 0, where kn, . . . , ks ∈ B for any
n, s. Then Xn+1 + k−1

n kn+1X
n+2 + · · · + k−1

n ksX
s ∈ P , so X /∈ P implies that
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1 + k−1
n kn+1X + · · ·+ k−1

n ksX
s−n ∈ P , a contradiction. So every nonzero prime

ideal is maximal.
(ii) [12], Theorem 2.9 (ii).
(iii) If P is different from A1X +A2X

2 + · · ·+An−1X
n−1 +XnB[X], then it

contains an element of the form 1+a1X+a2X
2+· · ·+an−1X

n−1+Xnf(X), where
ai ∈ Ai for i = 1, 2, . . . , n− 1 and f(X) ∈ B[X]. Now, if 1 +a1X +a2X

2 + · · ·+
an−1X

n−1+Xnf(X) can be factored in A1X+A2X
2+· · ·+An−1X

n−1+XnB[X]
it can be written as (1 + b1X + b2X

2 + · · · + bn−1X
n−1 + Xng(X))(1 + c1X +

c2X
2 + · · · + cn−1X

n−1 + Xnh(X)), where bi, ci ∈ Ai for i = 1, 2, . . . , n − 1
and g(X), h(X) ∈ B[X]. Hence 1 + a1X + a2X

2 + · · ·+ an−1X
n−1 +Xnf(X) is

irreducible in Tn if and only if it is irreducible in A1X+A2X
2+· · ·+An−1X

n−1+
XnB[X].

Now, let 1 + a1X + a2X
2 + · · · + an−1X

n−1 + Xnf(X) be irreducible in Tn

and suppose that 1+a1X+a2X
2+ · · ·+an−1X

n−1+Xnf(X) | k(X)l(X) in Tn.
Then 1+a1X+a2X

2+ · · ·+an−1X
n−1+Xnf(X) | k(X)l(X) in A1X+A2X

2+
· · ·+An−1X

n−1 +XnB[X], and so in A1X +A2X
2 + · · ·+An−1X

n−1 +XnB[X]
we have, say 1 + a1X + a2X

2 + · · · + an−1X
n−1 + Xnf(X) | k(X). Then, in

A1X + A2X
2 + · · · + An−1X

n−1 + XnB[X], k(X) = (1 + a1X + a2X
2 + · · · +

an−1X
n−1+Xnf(X))d(X). Now, d(X) can be written as d(X) = aXr(1+a1X+

a2X
2 + · · · + an−1X

n−1 +Xnp(X)). If r > 0, d(X) ∈ Tn, while if r = 0, k(X) =
(1+a1X+a2X

2+· · ·+an−1X
n−1+Xnf(X))(b(1+b1X+b2X

2+· · ·+bn−1X
n−1+

Xnp(X)) and b ∈ A0 because k(X) ∈ Tn. In either case, d(X) ∈ Tn and so
1 + a1X + a2X

2 + · · ·+ an−1X
n−1 +Xnf(X) | k(X) in Tn. Consequently, in Tn

every irreducible element of the type 1+a1X+a2X
2+· · ·+an−1X

n−1+Xnf(X)
is prime.

Now, since every element of the form 1 + a1X + a2X
2 + · · · + an−1X

n−1 +
Xnf(X) is a product of irreducible elements of the same form and hence is a
product of prime elements, it follows that every prime ideal of P different from
A1X +A2X

2 + · · ·+An−1X
n−1 +XnB[X] contains a principal prime and hence

is actually principal.
(iv) [12], Theorem 2.9 (iii).
(v) From (iii) a general element of Tn can be written as aXr(1 + a1X +

a2X
2 + · · · + an−1X

n−1 + Xnf(X)), where a ∈ B (with a ∈ A0 if r = 0) and
1 + a1X + a2X

2 + · · · + an−1X
n−1 + Xnf(X) is a product of primes.

Now, We give some basic information related to ideals.

Corollary 2.2. (i) If A be a field, then XB[X] be an maximal ideal in T .

(ii) If A be an integral domain, then XB[X] be an prime ideal in T .

(iii) T/(X) ∼= A.

(iv) T/B ∼= {0}.

(v) Let A ⊂ B be fields in T . T/(aX) be a field for any a ∈ B.
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(vi) Let A ⊂ B be fields in T . T/(a(1 +Xf(X))) be a field for any a ∈ A, f ∈
B[X] such that 1 + Xf(X) ∈ IrrB[X].

Proof. (i) Let A be a field. The proof follows from T/XB[X] ∼= A. We have
XB[X] is a maximal ideal in T .

(ii) – (iv) Obvious.

(v), (vi) From Theorem 2.9 in [12] aX for any a ∈ B is an irreducible
element. We get T/(aX) be a field. We also have a(1 + Xf(X)) for any a ∈
A, f ∈ B[X] such that 1 + Xf(X) ∈ IrrB[X] is a irreducible element. We have
T/(a(1 + Xf(X))) be a field.

Corollary 2.3. (i) If A0 + A1X + · · · + An−1X
n−1 be a field (where A0 ⊂

A1 ⊂ A2 ⊂ · · · ⊂ An−1 ⊂ B), then XnB[X] be an maximal ideal in Tn.

(ii) If A0 + A1X + · · · + An−1X
n−1 be a domain, then XnB[X] be an prime

ideal in Tn.

(iii) Tn/(X) ∼= A0.

(iv) Tn/B ∼= {0}.

(v) Let A0 ⊂ A1 ⊂ · · · ⊂ B be fields in Tn. Tn/(aX) be a field for any a ∈ B.

(vi) Let A0 ⊂ A1 ⊂ · · · ⊂ B be fields in Tn. Tn/(a(1 + a1X + a2X
2 + · · · +

an−1X
n−1 + Xnf(X))) be a field for any a ∈ B, ai ∈ Ai(i = 1, 2, . . . , n −

1), f ∈ B[X] such that 1 + Xf(X) ∈ IrrB[X].

Proof. This proof is similarly to proof of Proposition 2.2.

The Proposition 2.3 holds for T ′
n = A0 + A1X + A2X

2 + · · · + An−1X
n−1 +

XnB[X] where A0, A1, A2, . . . , An−1 ⊂ B, Ai ̸⊂ Aj for i ̸= j be fields.

Lemma 2.4. If A ⊂ B be fields and B[X] be a GCD-domain then I(B,A) be a
GCD-domain.

Example 2.1. T, Tn are no GCD-domains. Let f = a1 + b1X, g = a2 + b2X,
where a1, a2 ∈ A, b1, b2 ∈ B with A + XB[X], then gcd(f, g) = a1b2−a2b1

b2
. We

see that gcd(f, g) ∈ B \A and is not symmetrical.

Recall that a domain R is a pre-Schreier domain if every element a ∈ R is a
primal, i.e. for every elements b, c ∈ H if a | bc then there exist a1, a2 ∈ R such
that a1 | b, a2 | c, a = a1a2.

More information about Schreier and pre-Schreier domains we can see in
many works, e.g. in [1], [5], [7], [14], [18], respectively.

Lemma 2.5. If A ⊂ B be fields, then T be a pre-Schreier domain. If A0 ⊂
A1 ⊂ . . . An−1 ⊂ B be fields, then Tn is also pre-Schreier domain. But T ′

n

doesn’t satisfies a pre-Schreier conditions.
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The following lemma states the uniqueness of two polynomials in the com-
posites Tn and T ′

n.

Lemma 2.6. Let f = a0 + a1X + a2X
2 + · · · + anX

n + · · · + arX
r, g = b0 +

b1X + b2X
2 + . . . bnX

n + · · ·+ bsX
s, where r ≥ n ≥ 0, s ≥ n ≥ 0 and ai, bi ∈ Ai

for i = 0, 1, 2, . . . , n and aj ∈ B for j = n + 1, n + 2, . . . , r and bj ∈ B for
j = n + 1, n + 2, . . . , s. If f = g then r = s and ai = bi for i = 0, 1, 2, . . . , r.

Proof. Let f = a0+a1X+a2X
2+· · ·+anX

n+· · ·+arX
r, g = b0+b1X+b2X

2+
. . . bnX

n + · · · + bsX
s, where s ≥ r ≥ n ≥ 0 and ai, bi ∈ Ai for i = 0, 1, 2, . . . , n

and aj ∈ B for j = n + 1, n + 2, . . . , r and bj ∈ B for j = n + 1, n + 2, . . . , s.
Consider a0 + a1X + a2X

2 + · · · + anX
n + · · · + arX

r = b0 + b1X + b2X
2 +

. . . bnX
n + · · · + bsX

s, then (b0 − a0) + (b1 − a1)X + (b2 − a2)X
2 + · · · + (bn −

an)Xn + · · · + (br − ar)X
r + br−1 + · · · + bsX

s = 0. Hence r = s and ai = bi for
i = 0, 1, 2, . . . , r.

Theorem 2.2. Consider T = A + XB[X], where A be a subfield of B; Tn =
A0 + A1X + A2X

2 · · · + An−1X
n−1 + XnB[X], where A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂

An−1 ⊂ B be fields; I(B,A), where A ⊂ B be domains. Then

(i) f ∈ IrrT if and only if f ∈ IrrB[X], f(0) ∈ A.

(ii) f ∈ IrrTn if and only if f ∈ IrrB[X], ai ∈ Ai, where f = a0 + a1X +
. . . an−1X

n−1 +anX
n + · · ·+amXm with ai ∈ Ai for i = 0, 1, . . . n− 1 and

an, an+1, . . . , am ∈ B(n < m).

(iii) f ∈ Irr I(B,A) if and only if f ∈ IrrB[X] and f(A) ⊆ A.

Proof. (i) Suppose that f /∈ IrrB[X] or f(0) /∈ A. If f(0) /∈ A, then f /∈
T , so f /∈ IrrB[X]. Now, assume that f /∈ IrrB[X], then f = gh, where
g, h ∈ B[x] \ B. Let g = a0 + a1X + · · · + anXn, h = b0 + b1X + · · · + bmXm.
We have f = (a0 + a1X + · · · + anXn)(b0 + b1X + · · · + bmXm), then f =(
1 + a1

a0
X + · · ·+ an

a0
Xn

)
(a0b0 +a0b1X + · · ·+a0bmXm), where a0b0 = f(0) ∈ A.

Now, suppose that f /∈ IrrT . If f /∈ T , then f(0) /∈ A. Now, assume that f ∈ T ,
then we have f = gh, where g, h ∈ T \A. This implies g, h ∈ B[x] \B.

(ii) Occur in the same way as in (i).

(iii) From definition I(B,A) we have f ∈ IrrB[X] and f(A) ⊆ A.

In [18], Proposition 8.6 with Jȩdrzejewicz, Marciniak and Zieliński we re-
ceived the characterization of square-free elements in composite A+XB[X], for
A ⊂ B fields, i.e.

Proposition 2.6. Let L and F be fields such that L ⊂ F and let T = L+XF [X],
then Sqf T = (Sqf F [X] ∩ T ) ∪ {X2h;h ∈ Sqf F [X], h(0) ̸∈ {a2b; a ∈ F, b ∈ L}}

Corollary 2.4. Let A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ B be fields, then Sqf Tn =
(Sqf B[X] ∩ Tn) ∪ {X2h;h ∈ Sqf B[X], h(0) ̸∈ {a2b; a ∈ B, b ∈ A}}.
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In [15], Lemma 6.4 we have informations about irreducible element in monoid
domain D[S], where D be a domain, and S be a submonoid of Q+. We present
a generalized Proposition.

Proposition 2.7. Let B be an integral domain with quotient field K and M
a monoid with quotient group G ̸= M . Assume that B contains prime ele-
ments p1, p2, . . . , pr−1. Assume that M is integrally closed and each nonzero
element of G is type (0, 0, . . . ) (G satisfies the ascending chain condition on
cyclic subgroups). Consider m1,m2, . . . ,mr ∈ M such that m1 ∈ IrrM and
m2,m3, . . . ,mr /∈ m1 + M , then pr−1X

mr − · · · − p2X
m3 − p1X

m2 − Xm1 ∈
IrrB[M ].

Proof. Let ≤ be a total order on G. We may assume that mr < mr−1 <
. . .m2 < m1. Suppose that pr−1X

mr − · · · − p2X
m3 − p1X

m2 −Xm1 = fg with
f, g ∈ B[M ]. Write f = a1X

t1 + . . . amXtm and g = b1X
k1 + · · · + bnX

kn in
canonical form, where t1 < · · · < tm and k1 < · · · < kn. First assume that either
f or g is a monomial, say f = aXt. Then a ∈ B∗,m1 = t+kn,m2 = t+k1,m3 =
t+ k2, . . . ,mr = t+ kr−1. Since m1 ∈ IrrM , either t or kn is invertible in M . If
kn is invertible, then m2 = t + k1 = (m1 − kn) + k1 ∈ m1 + M,m3 = t + k2 =
(m1−kn)+k2 ∈ m1+M, . . . ,mr ∈ m1+M , a contradiction. Thus t is invertible
in M , and hence f is a unit in B[M ]. Thus we may assume that f and g are not
monomials. Now, consider the reduction of pr−1X

mr − · · · − p2X
m3 − p1X

m2 −
Xm1 = fg modulo the ideal (p1, p2, . . . , pr−1). Then (−1 + (p1, p2, . . . , pr−1) =
((am + (p1, p2, . . . , pr−1))X

tm)((bn + (p1, p2, . . . , pr−1))X
kn). This means that

a1 + (p1, p2, . . . , pr−1) = b1 + (p1, p2, . . . , pr−1) = (p1, p2, . . . , pr−1). In this case
c1p1 + . . . cr−1pr − 1 = a1b1 ∈ (p1, . . . , pr−1)

2, a contradiction. Thus pr−1X
mr −

· · · − p2X
m3 − p1X

m2 −Xm1 ∈ IrrB[M ].

Proposition 2.8. B[M ]/(pr−1X
mr−· · ·−p1X

m2−Xm1) be a field, where B be a
domain, p1, p2, . . . , pmr ∈ B,m1,m2, . . . ,mr ∈ M with m1 ∈ IrrM,m2,m3, . . . ,
mr /∈ m1 + M .

Proof. It follows from Proposition 2.7.

The next statements give a description of some multiplicative systems. Proofs
of these statements are easy.

Proposition 2.9. If A be an integral domain then S = A+XB[X] \XB[X] is
a saturated multiplicative system.

Proposition 2.10. If A0 +A1X + · · ·+An−1X
n−1 be an integral domain, then

S = Tn \ XnB[X] (with appropriate assumptions) is saturated multiplicative
system.
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3. Modules

In this chapter we will discuss the basic information related to modules.

Proposition 3.1. Let R ∈ {T,B[X], I(B,A)}, then M ∈ {T, Tn, T
′
n, I(B,A)}

be R-modules.

Proof. Easy to check.

Question: What are the smallest assumptions for a sequence below to be an
exact sequence in A + XB[X]?

· · · → A0 + A1X + · · · + An−1X
n−1 + XnB[X] → A + XB[X] → B[X] → · · ·

Consider functions f : A0+A1X+ · · ·+An−1X
n−1+XnB[X] → A+XB[X]

and g : A + XB[X] → B[X], where A0, A1, . . . , An−1, A,B be a domains such
that A0 ̸⊂ Ai for some i ∈ {1, 2, . . . , n − 1} and A,A0A1, A2, . . . , An−1 ⊂ B.
Consider y ∈ ker g, then g(y) = 0. This implies y = 0 = f(0) and then y ∈ ℑf .

We do not know, whether we can prove ℑf ⊂ ker g with the same assump-
tions.

Lemma 3.1. (i) If C be a subgroup of A, then C + XB[X] be a submodule
of B[X]-module A + XB[X].

(ii) If Ci be a subgroup of Ai for i = 0, 1, . . . , n − 1, then C0 + C1X + · · · +
Cn−1X

n−1 + XnB[X] be a submodule of B[X]-module A0 + A1X + · · · +
An−1X

n−1 + XnB[X].

(iii) If C be a subdomain of A and D be a subdomain of B, then I(D,C) be a
submodule of B[X]-module I(B,A).

(iv) If N be a submonoid of M , then B[N ] be a submodule of B-module B[M ],
where B be a field.

Proof. Easy to proof.

Proposition 3.2. (i) If A be a simple R-module, then XB[X] and T be
unique submodules of T .

(ii) For some i ∈ {0, 1, 2, . . . , n− 1} consider Ai which be a simple R-module.
Then A0 + · · ·+Ai−1X

i−1 +CiX
i +Ai+1X

i+1 + . . . An−1X
n−1 +XnB[X]

be unique submodules of Tn or T ′
n, where Ci ∈ {0, Ai}.

(iii) Consider A0, A1, . . . , An−1 ⊂ B, where for finitely i ∈ {0, 1, . . . , n − 1}
assume Ai be simple R-modules. Then C0 + C1X + . . . Cn−1X

n−1 +
XnB[X] be unique submodule of Tn or T ′

n, where for simple R-modules
Ai1 , Ai2 , . . . , Aik (i1, i2, . . . ik ∈ {0, 1, . . . , n − 1}) we have Ci1 ∈ {0, Ai1},
Ci2 ∈ {0, Ai2}, . . . , Cik ∈ {0, Aik}.
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(iv) Consider a simple R-module M and a field B, then 0, B[M ] be unique
submodules of R-module B[M ].

Proof. (i) If A be a simple module then 0 and A be a unique submodules of
A. Hence we get C + XB[X], where C ∈ {0, A}. Proof of (ii), (iii), (iv) hold
similarly to (i).

4. Localizations

This chapter will tell about building fractions. The following statements are
very well known, but have been included in the structures we are considering.

Theorem 4.1. Let S be a multiplicative subset of Tn. There exists a ring Tn,S

and a homomorphism w : Tn → Tn,S which satisfy the following conditions:

(i) for all s ∈ S, the elements w(s) are invertible in Tn,S,

(ii) given a homomorphism of composites f : Tn → Tm such that, for every
s ∈ S, the elements f(s) are invertible in Tm, there exists a unique homo-
morphism F : Tn,S → Tm such that Fw = f .

The ring Tn,S is determined by the above conditions up to isomorphism.

Proof. Let us consider the set Tn × S of all pairs (g, s), where g ∈ Tn, s ∈ S,
and define the operations +, · in it by formulae

(g, s) + (g1, s1) = (gs1 + g1s, ss1), (g, s) · (g1, s1) = (gg1, ss1).

The pairs (g, s), (g1, s1) ∈ Tn × S are called equivalent (=) if and only if there
exists s2 ∈ S such that s2(gs1− g1s) = 0. The relation thus defined is a relation
of equivalence. The equivalence class of a pair (g, s) ∈ Tn×S with respect to the
relation = is denoted by gs−1 or g/s and called fraction. The set of all fractions
g/s with g ∈ Tn, s ∈ S forms a ring denoted Tn,s. Fractions g/s, g′/s′ ∈ Tn,s are
equal if and only if there exists an element s′′ ∈ S such that s′′(rs′ − r′s) = 0.
We define the ring homomorphism w : Tn → Tn,S by the formula w(g) = g/1
for g ∈ Tn. The ring Tn,s and the homomorphism w satisfy conditions (i) and
(ii).

Corollary 4.1. Tn,S = A0,S + A1,SX + · · · + An−1,SX
n−1 + XnBS [X].

Similarly, we can construct a fraction module.

Lemma 4.1. Let S be a multiplicative subset of I(B,A), then I(B,A)S =
I(BS , A) with B be a field.

Proposition 4.1. Let M ⊂ Q+ be a subgroup and let B be a ring, then B[M ]0 =
B0[M ].

Proof. Consider f ∈ B[M ], g ∈ B[M ] \ {0}. When we divided f by g we get
a sum of elements form a

bX
m−n, where a ∈ B, b ∈ B \ {0},m, n ∈ M . We see

that m− n ∈ M and a
b ∈ B0.
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5. Graded rings and modules

This chapter shows the considered structures as graded rings and modules.
Later, we can use it to study different properties.

Proposition 5.1. (i) T be a graded ring.

(ii) Tn be a graded ring.

(iii) I(B,A) be a graded ring.

(iv) If M be a countable monoid and B be a domain, then B[M ] be a graded
ring.

Proof. Obvious.

Example 5.1. T ′
n is no a graded ring. Consider T ′

3 = A0 + A1X + A2X
2 +

X3B[X], then R1R3 = A0+A0A1X+(A0A2+A1)X
2+(B+A1A2)X

3+BX4 ∈
A0 + XB[X] ̸= R4.

Proposition 5.2. (i) T be a graded T -module.

(ii) Tn be a graded Tn-module.

(iii) I(B,A) be a graded R-module, where R ∈ {I(B,A), T}.

(iv) B[M ] be a graded R-module, where R ∈ {I(B,A), B[M ]} where B be a
field and M be a monoid.

6. Composites with monoid and group coefficients. Monoid rings

The main motivation of this paper is description of composites and monoid
domains in the language of commutative algebra. Previous chapters were de-
scribed but these chapters have been described for the rings (for composites)
and for domains (for monoid domains). Then, we decided to try described for
monoids/groups (for composites) and for rings (for monoid rings).

Lemma 6.1. Tn is a monoid, if components (A0, . . . , An−1, B) are monoids,
Tn ⊂ T and T ′

n ⊂ T .

Of course Lemma 2.2 and Corollary 2.1 hold, but in monoid version. The
same holds true for invertible and nilpotent elements in polynomial composites
and monoid rings (Proposition 2.1 and Proposition 2.2, proofs are similar).
Proposition 2.4 can also be used for monoid rings.

Unfortunately, it is not known whether the Theorem 2.1 can occur in the
monoid or group version.

Similar claims are in the case of irreducible elements (Theorem 2.2, Propo-
sition 2.7). We often come across the concept of atom more in groups or in
monoids.
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7. Some examples

Recall that a ring R satisfies ACCP if each chain of principal ideals of R is
stabilize.

Example 7.1. In [12] Example 5.1 showed an example of an integral domain
R which satisfies ACCP, but whose integral closure does not satisfy ACCP. It
mean R = Z + XZ[X], where Z be the ring of all algebraic integers. R satisfies
ACCP. For if not, then there is an infinite properly ascending chain of pricipal
ideals of R. Since the degrees of the polynomials generating these principal
ideals are nonincreasing, the degrees eventually stabilize. The principal ideals
in Z generated by the leading coefficients of these polynomials gives an infinite
ascending chain a1Z ⊊ a2Z ⊊ ... where each an/an+1 ∈ Z. Thus all an ∈ Q[a1].
Let A = Z ∩ Q[a1], then a1A ⊊ a2A ⊊ · · · ⊊ A, a contradiction since A is
Dedekind.

Example 7.2. Recall that a domain R is called a half-factorial domain (HFD)
if R is atomic and for each nonzero nonunit x ∈ R, x = x1 . . . xm = y1 . . . yn
where xi, yj are all irreducible for i = 1, . . . ,m, j = 1, . . . , n, implies that m = n.
A HFD domain satisfies ACCP.

Example 7.3. If K1 ⊊ K2 is algebraic extension of fields, then R = K1 +
XK2[X] has integral closure K2[X], a Euclidean domain. If [K2 : K1] < ∞,
then R is a Noetherian HFD that is not integrally closed. If K1 is algebraaically
closed in K2, then R is an integrally close non-Noetherian HFD. Of course, R
satisfies ACCP.

Example 7.4. Let R = R+XC[X]. So R is a HFD, so has ACCP, then atomic.

Example 7.5. ([2]) Let F be a field and T the additive submonoid of Q+

generated by {1/3, 1/(2 · 5), . . . , 1/(2jpj), . . . }, where p0 = 3, p1 = 5, . . . is the
sequence of odd primes. Let R be the monoid domain F [X;T ] = F [T ] and
N = {f ∈ R | f has nonzero constant term}. Then F [T ]N is an atomic domain
which does not satisfy ACCP.

Example 7.6. Let K be a field and T the additive submonoid of Q+ generated
by {1/2, 1/3, 1/5, . . . , 1/pj , . . . }, where pj is the jth prime. Then the monoid
domain R = K[T ] satisfies ACCP.

For a 0 ̸= f = b1X
a1 + . . . bnX

an ∈ R with a1 < · · · < an and bn ̸= 0,
write β(f) = an. If ACCP fails, the there is a strictly increasing chain (f1) ⊂
(f2) ⊂ . . . of principal ideals in R. Then each fn = fn+1gn+1 for some nonunit
gn+1 ∈ R. Hence each β(fn) = β(fn+1) + β(gn+1), and each term is positive.
Then in T , we have β(f1) > β(f2) > . . . with each β(fn) − β(fn+1) ∈ T , but
this is impossible by the above-mentioned unique representation of each nonzero
a ∈ T .

Example 7.7. ([10]) Let K be a field, T = {q ∈ Q | q ⩾ 1} ∪ {0} an additive
submonoid of Q+, and R = K[T ] the monoid domain. Then RS = K[Q], where
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S = {Xt | t ∈ T}, is not atomic since RS is a GCD-domain, but RS does not
satisfy ACCP.

8. Applications of polynomial composites in cryptology

Each such polynomial is the sum of the products of the variable and the coef-
ficient. And what if subsequent coefficient sets are appropriate cryptographic
systems? Instead of encrypting with one system, we can create one system
composed of many systems. Such a cipher is very difficult to break. If the spy
detects encryption systems (composite coefficients), then the problem will be to
find the right sum and product of such systems.

Assume that we have two people: Alice und Bob. Alice wants to send a
message to Bob. Alice has one composite type T ′

n and Bob has another one
composite type T ′

n.

We can build such composite by various encryption systems (even known
ones). Let see note Lemma:

Lemma 8.1. Let f = a0 +a1X + · · ·+an−1X
n−1 +

∑m
j=n ajX

j, g = b0 + b1X +

· · · + bn−1X
n−1 +

∑m
j=n bjX

j ∈ T ′
n, where ai, bi ∈ Ai for i = 1, 2, . . . , n− 1 and

aj , bj ∈ B for j = n, n + 1, . . .m. Then fg ∈ A0 + XB[X].

Put Ai, Bj (i, j = 0, 1, . . . , n − 1) be different encryption systems, then we
have f and g are composition of encryption systems. No consider B. To improve
security, let’s fix that deg f = n−1, deg g = n−k, where k ∈ {2, . . . n−1}. And
such f, g Alice and Bob agree before the message is sent.

Alice and Bob multiply these composites to form one. We have fg = (A0 +
A1X + . . . AkX

k)(B0 + B1X + · · · + BlX
l) = A0B0 + (A0B1 + A1B0)X + · · · +

AkBlX
k+l.

Note that the sum and product of the encryption systems must be defined
in the formula above. Definitions we leave Alice and Bob. But in this section
we can put SiSj : x → (x)Si(x)Sj and Si + Sj : x → ((x)Si)Sj .

So in the product we encrypt the letter as two letters, the first in the first
system and the second in the second system. And in the sum we encrypt the
letter using the first system and then the second system. Of course, we can
define completely different, at our discretion.

Assume that degree of fg is m and text to encrypt consists of more letters
then m + 1. Then we divide the text into blocks of length m + 1. We can
assume that fg(0) encrypts the first letter of each block. Expression at X of fg
encrypts the second letter of each block, and expression at X2 of fg encrypts
the third letter and so on.

Now, let’s see how to decrypt in this idea.

Assume that we have an encrypted message M0M1 . . .Mn. If our key is
degree m, then we divide message on m + 1 partition. And every partition
divide to two. Every two letters are one letter of message.
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Earlier we define SiSj : x → (x)Si(x)Sj and Si+Sj : x → ((x)Si)Sj . Then de-
cryption of two letters MlMl+1 (l = 0, 2, 4, . . . ) are MlMl+1 = (Ml)Si(Ml+1)Sj =
Nl,l+1 (one letter) and Ml = ((Ml)Si)Sj = (Nl)ij (one letter).

Example 8.1. Alice and Bob agree different encryption systems in the center:
A0, A1, A2, B0, B1. Next, Alice has gone far from Bob.

We have two compositions: f = A0 + A1X + A2X
2, g = B0 + B1X. Their

key is one composition in the form fg i.e. A0B0 + (A0B1 +A1B0)X + (A2B0 +
A1B1)X

2 + A2B1X
3.

The established systems are as follows:
A0 is a Caesar cipher, where the letter is shifted one letter forward;
A1 is a Caesar cipher, where the letter is shifted two letter forward;
A2 is a Caesar cipher, where the letter is shifted three letter forward;
B0 is a Caesar cipher, where the letter is shifted one letter back;
B1 is a Caesar cipher, where the letter is shifted two letter back.
Suppose Alice wants to send a message saying

0 2 4 6 8 9 6 5

The degree of fg is 3. Hence message divide to 3+1 partition. So the fourth
letter is the same encrypted.

Letters 0 and 8 encrypt by A0B0, then, from definition of A0, B0, 0 will be
1 9 (two letters). 8 will be 9 7.

Letters 2 and 9 encrypt by A0B1 + A1B0, then 2 will be 5 9 and 9 will be 2
6.

Letters 4 and 6 encrypt by A2B0 + A1B1, then 4 will be 9 1 and 6 will be 1
3.

Letters 6 and 5 encrypt by A2B1, then 6 will be 9 4 and 5 will be 8 3.
Bob receives a message from Alice:

1 9 5 9 9 1 9 4 9 7 2 6 1 3 8 3.

Now, Bob would like to read the message. Bob sees that message has 16
letters, so the original text has 8 letters, because the composition fg has degree
3 (i.e. (3 + 1)2 letters of original message). Divide message by 8 letters.

We take the first pairs from each section, i.e. 1 9 and 9 7. Bob uses decryption
(A0B0)

−1. So, 1 will be 0 by A−1
0 and 9 will be 0 by B−1

0 . Hence 1 9 will be 0.
Similarly, 9 7 will be 8.

Next, we take the second pairs from each section, i.e. 5 9 and 2 6. Bob uses
decryption (A0B1 + A1B0)

−1. So, 5 9 will be 2 and 2 6 will be 9.
We take next pair, i.e. 9 1 and 1 3. Bob uses decryption (A2B0 + A1B1)

−1.
So, 9 1 will be 4 and 1 3 will be 6.

Similarly, the last pairs decrypt by (A2B1)
−1. The pair 9 4 will be 6 and 8

3 will be 5.
After decrypting, Bob received the message:

0 2 4 6 8 9 6 5.
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9. The concept of using monoid domains in cryptology

Recall that if F be a field and M be a submonoid of Q+ then we can construct
a monoid domain:

F [M ] = F [X;M ] = {a0Xm0 + · · · + anX
mn | ai ∈ F,mi ∈ M}.

Any alphabet of characters creates a finite set. Most ciphers are based on
finite sets. But we can have the idea of using the infinite alphabet A, although
in reality they can be cyclical sets with an index that would mean a given cycle.
For example, A0 - 0, B0 - 1, . . . , Z0 - 25, A1 - 0, B1 - 1, . . . , where Ai=A,
. . . , Zi=Z for i = 0, 1, . . . . We see that this is isomorphic to a monoid N0

non-negative integers by a formula

f : A → N, f(mi) = i.

Then, we can use a monoid domain by a map

φ : A → F [A], φ(m0,m1, . . . ,mn) = a0X
m0 + . . . anX

mn .

Here, one should think carefully about what a field F should be and think
about additional mappings. In contrast, monoid domains can be excellent car-
riers of characters in the alphabet for monoids. This will make it harder to
break any ciphers based on monoids for one simple reason, namely, we don’t
have inverse properties in a monoid.
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