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Abstract

In this paper we consider polynomial composites in the form K +
XL[X], where K is the subdomain of the field L. In addition to the
usual domains, we also consider the Noetherian, Prüfer and GCD-
domains.

1 Introduction

D.D. Anderson, D.F. Anderson, M. Zafrullah in [1] called object K +
XL[X] as a composite for K ⊂ L fields. There are a lot of works where
composites are used as examples to show some properties. But the most
important papers are presented below.

In 1976 [3] authors considered the structures in the form D + M , where
D is a domain and M is a maximal ideal of ring R, where D ⊂ R. Later
(in [18]), we proved that in composite in the form D + XK[X], where D
is a domain, K is a field with D ⊂ K, that XK[X] is a maximal ideal of
K[X]. Next, Costa, Mott and Zafrullah ([7], 1978) considered composites in
the form D + XDS[X], where D is a domain and DS is a localization of D
relative to the multiplicative subset S. Zafrullah in [21] continued research
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on structure D + XDS[X] but he showed that if D is a GCD-domain, then
the behaviour of D(S) = {a0 +

∑
aiX

i | a0 ∈ D, ai ∈ DS} = D + XDS[X]
depends upon the relationship between S and the prime ideals P od D such
that DP is a valuation domain (Theorem 1, [21]). In 1991 there was an article
[2] that collected all previous results about composites and the authors began
to create a theory about composites creating new results. In this paper, the
structures under consideration were officially called as composites. After this
article, various minor results appeared. But the most important thing is that
composites have been used in many theories as examples. We have researched
many properties of composites in [18] and [17] and [19].

In parallel, some constructions that specifically construct a polynomial
composite were also considered. Suppose that T is a domain and L is a
field that is a retract of T , that is, suppose T = L + M , where M is a
maximal ideal of T . Each subring K of L determines a subring R = K + M
of T . This construction has been studied extensively in two situations. The
first systematic investigation of the properties of R is due to R.Gilmer ([11],
Appendix 2, p.558) and Gilmer and W. Heinzer [12], who required that T be
a valuation domain. A similar investigation has been conducted under the
hypothesis that T = L[X], M = XL[X], and L is the quotient field of K
[6]. The interest in this case arises because R is the symmetric algebra of the
K-module L. In both cases the properties of R are related to those of K;
in the case of a valuation domain, the relationship of K to L also plays an
important role. In this paper, we investigate some properties of polynomial
composites based on the above construction.

More specifically, we focus attention on four properties: we obtain neces-
sary and sufficient conditions for K + XL[X] (where K is a subdomain of a
field L) to be a coherent domain, a Prüfer domain, a Noetherian domain, and
a GCD-domain. What is most satisfying is that the conditions are expressed
solely in terms of the properties of the components of the construction. If L
is the quotient field of K, it is also possible to describe the prime ideal lattice
of K + XL[X] and thus to compute the Krull dimension of K + XL[X]. If
K +XL[X] is a Prüfer domain, so are K and L[X]. Their ideal class groups
are shown to be related by a short exact sequence. This yields conditions
for K + XL[X] to be a Bézout domain. Unfortunately, if K + XL[X] is
a Prüfer domain it has the n-generator property whenever K and L[X] do.
Thus, this construction casts no light on whether invertible ideals in Prüfer
domains can require more than two generators. The paper concludes with
a brief consideration of methods for obtaining domains L[X] as the form
L + XL[X] that satisfy the conditions of the theorems.

It is undoubtedly possible to characterize other properties. We have lim-
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ited ourselves to these four because they have received attention in the special
contexts investigated earlier, and because they seem adequate to demonstrate
that such problems can often be handled in more generality than had previ-
ously seemed feasible. It seems quite likely that at least some of the results
of this paper can be extended to a somewhat more general situation. As
Gilmer [11] noted, the assumption that L is a retract of L[X] is often not
essential. Instead, it can be assumed that L = L[X]/XL[X], in which case
K + XL[X] is replaced by the pullback of L[X] and K. However, we have
chosen to follow Gilmer’s lead in this regard, and for the sake of clarity and
simplicity we limit ourselves to the case of a retract.

Our interest in this problem was kindled by the paper of D. Dobbs and
I. Papick [8], which gives necessary and sufficient conditions for K + XL[X]
to be coherent when L[X] is a valuation domain.

2 Results

We have arranged the following considerations and results in such a way
that we present K + XL[X] constructions with general overrings.

Lemma 2.1. If there exists a nonzero ideal J of L[X], where L be a field,
that is finitely generated as an K + XL[X]-module, then K is a field and
[L : K] < ∞.

Proof. Clearly, J is finitely generated over T , and hence MJ ̸= J . For
otherwise, MTM · JTM = JTM and therefore JTM = 0, by Nakayama’s
lemma. This is impossible, since 0 ̸= J ⊆ JTM . It follows that J/MJ is a
nonzero (T/M = L)-module that is finitely generated as an (R/M = K)-
module. Since L is a field, J/MJ can be written as a direct sum of copies
of L. Thus, L is a finitely generated K-module. But then K is a field, since
the field L is integral over K and obviously [L : K] < ∞.

For the purpose of casting the next result in generality sufficient to cover
all the situations that arise, we use the following terminology from [20]. A
domain S with quotient field L is called a finite conductor domain if for
each pair x, y ∈ L we have xS ∩ yS is a finitely generated S-module. Every
coherent domain is a finite conductor domain, as is every GCD-domain ([5],
Theorem 2.2) and ([11], Theorem B, p. 605).

Proposition 2.2. If K + XL[X] is a finite conductor domain, then exactly
one of the following conditions holds:
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(a) K is a field, [L : K] < ∞, and XL[X] is a finitely generated ideal of
L[X].

(b) L is the quotient field of K and L[X]XL[X] is a valuation domain.

Proof. If L is not the quotient field of K, then there is an x (0 ̸= x ∈ L) such
that xK∩K = (0). Clearly, x(K+XL[X]) = xK+x(XL[X]) = xK+XL[X],
since x is a unit in L and XL[X] is an ideal of L[X]. Now K + XL[X] is a
finite conductor domain, and x(K + XL[X]) and K + XL[X] are principal
fractional ideals of K + XL[X]. Therefore, x(K + XL[X]) ∩ (K + XL[X])
is a finitely generated K + XL[X]-module. But

x(K + XL[X]) ∩ (K + XL[X]) = (xK + XL[X]) ∩ (K + XL[X]) =

= (xK ∩K) + (XL[X] ∩XL[X]) = XL[X].

Hence, XL[X] is a finitely generated ideal of L[X], and by Lemma 2.1,
(a) holds.

If L is the quotient field of K, let a and b be nonzero elements of L[X].
Now a(K +XL[X])∩ b(K +XL[X]) ⊇ a(XL[X])∩ b(XL[X]), and the latter
is a nonzero ideal of L[X]. Moreover, since K + XL[X] is a finite conductor
domain and L is the quotient field of K, it follows from Lemma 2.1 that

a(K + XL[X]) ∩ b(K + XL[X]) ̸= a(XL[X]) ∩ b(XL[X]).

Choose x ∈ (a(K+XL[X])∩b(K+XL[X]))\(a(XL[X])∩b(XL[X])). Write
x = (k1 + m1)a = (k2 + m2)b with k1, k2 ∈ K and m1,m2 ∈ XL[X]. One
of the elements k1 and k2 is nonzero, say k1 ̸= 0. Since k1 + m1 /∈ XL[X],
k1 + m1 is a unit in L[X]M . Therefore,

a = (k1 + m1)
−1(k2 + m2)b ∈ bL[X]XL[X],

and thus aL[X]XL[X] ⊆ bL[X]XL[X]. It follows that L[X]XL[X] is a valuation
domain.

This is a convenient juncture for recording some observations that we
shall use frequently.

K + XL[X] and L[X] have the same quotient field. This is a general
remark about integral domains that have a nonzero ideal in common.

Since L[X] is integrally closed, the integral closure of K + XL[X] is
J + XL[X], where J is the integral closure of K in L. This follows easily
from the fact that K + XL[X] and L[X] have the same quotient field.
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If K is a field and [L : K] < ∞ then L[X] is a finite K +XL[X]-module.
Indeed, if {1, b2, . . . , bn} is a field basis for L/K, then {1, b2, . . . , bn} is an
K + XL[X]-module generating set for L[X].

If K is the quotient field of D, then L[X] = (K + XL[X])K\{0} is a
localization of K + XL[X]. Moreover, K + XL[X] is a faithfully flat K-
module. That no maximal ideal of K blows up in K + XL[X] is obvious;
moreover, as a K-module, K+XL[X] is the direct sum of K and a K-module,
namely M , which is a direct sum of copies of L, a flat K-module.

We come now to our first theorem. Recall that a domain S is coherent
if direct products of flat S-modules are flat. Other characterizations include
“finitely generated ideals are finitely presented” and “any two finitely gener-
ated ideals of S have finite intersection” ([5], Theorems 2.1 and 2.2). Thus,
Noetherian domains and Prufer domains are coherent.

Theorem 2.3. The following conditions are equivalent:

(1) K + XL[X] is coherent.

(2) L[X] is coherent and exactly one of the following holds:

(a) XL[X] is a finitely generated ideal of L[X], K is a field, and
[L : K] < ∞.

(b) L is the quotient field of K, K is coherent, and L[X]XL[X] is a
valuation domain.

Proof. (⇒) By Proposition 2.2, two cases arise.

If K is a field, [L : K] < ∞, and XL[X] is a finitely generated ideal
of L[X], then L[X] is a finite K + XL[X]-module. It follows from ([14],
Corollary 1.5, p. 476) that L[X] is coherent.

If L is the quotient field of K, then L[X], being a localization of K +
XL[X], is coherent, and by Proposition 2.2, L[X]XL[X] is a valuation domain.
To see that K is coherent, one can show directly that the intersection of two
finitely generated ideals is finitely generated, or, given a finitely generated
ideal I of K, one can use the faithful flatness of K+XL[X] over K to descend
the finite presentation of I(K + XL[X]) = I ⊗K (K + XL[X]) to a finite
presentation of I.

(⇐) Suppose the conditions of (a) hold. We shall need the following general
remark. Let {1, b2, . . . , bn} be a field basis for L/K. If ϕ is the (K+XL[X])-
homomorphism from (K +XL[X])n to L[X] given by ϕ(r1, . . . , rn) =

∑
ribi,

then ϕ is surjective and the kernel of ϕ is isomorphic to (XL[X])n−1. The
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only statement that needs justification is the one about the kernel. Write
ri = ki + mi. Then ϕ(r1, . . . , rn) = 0 if and only if

∑
(ki + mi)bi = 0,

which implies
∑

kibi = 0; thus k1 = · · · = kn = 0, since 1, b2, . . . , bn, are
K-linearly independent. Also,

∑
mibi = 0, which entails m1 = −

∑n
2 mibi.

The isomorphism from (XL[X])n−1 onto the kernel of ϕ is given by

(m2, . . . ,mn) 7→
(
−

n∑
2

mibi,m2, . . . ,mn

)
.

Therefore,

0 → (XL[X])n−1 → (K + XL[X])n → L[X] → 0

is a presentation of L[X] as an (K + XL[X])-module, and since XL[X] is
finitely generated, L[X] is a finitely presented (K + XL[X])-module. To
show that X + L[X] is coherent, we shall argue that direct products of flat
(K + XL[X])-modules are flat. Thus, let {Eα} be a collection of flat (K +
XL[X])-modules. For each a, the L[X]-module Eα ⊗K+XL[X] L[X] is L[X]-
flat, and since L[X] is coherent,

∏
α(Eα ⊗K+XL[X] L[X]) is L[X]-flat. But

since L[X] is finitely presented,∏
α

(Eα ⊗K+XL[X] L[X]) ∼= (
∏
α

Eα) ⊗K+XL[X] L[X]

([2], Exercise 9, p. 43). By the descent lemma of D. Ferrand ([10], p.
946),

∏
α Eα is (K + XL[X])-flat.

Suppose the conditions of (b) hold. Since L[X]XL[X] is a valuation do-
main, C/XL[X]C is a L-vector space of dimension at most 1 for each ideal
C of L[X]. Indeed, let a, b ∈ C \ XL[X]C. Then either a/b or b/a lies in
L[X]XL[X], say

a/b = t/(l + m) (t ∈ T,m ∈ XL[X], l ∈ L \ {0}).

Then (l + m)a = bt or, what is the same thing, a = l−1tb− l−1ma. Thus
a = (l−1t)b + XL[X]C.

Now, let A and B be nonzero, finitely generated ideals of K + XL[X].
Then AL[X]∩BL[X] = (A∩B)L[X] is finitely generated, say by c1, . . . , cn ∈
A ∩B. This is possible since L[X] is a localization of K + XL[X]. Since

(K + XL[X])(c1, . . . , cn) ⊇ XL[X](K + XL[X])(c1, . . . , cn) =

= XL[X]L[X](c1, . . . , cn) = XL[X]L[X](A ∩B) = XL[X](A ∩B),
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if we can show that (A ∩ B)/XL[X](A ∩ B) is finitely generated over K +
XL[X], it will follow that A ∩ B is finitely generated. It is clearly sufficient
to prove that (A∩B)/XL[X](A∩B) is finitely generated over K. Therefore,
consider the exact sequence

0 → A ∩B → A⊕B → A + B → 0.

Tensoring with K + XL[X]/XL[X] = K, we obtain the exact sequence

(A ∩B)/XL[X](A ∩B)
α−→ (A/XL[X]A) ⊕ (B/XL[X]B)

β−→
β−→ (A + B)/XL[X](A + B) → 0.

We claim α is monic. Tensoring

(A/XL[X]A) ⊕ (B/XL[X]B)
β−→ (A + B)/XL[X](A + B) → 0

with L[X] or L, we see that the sequence

(L[X]A/XL[X]A) ⊕ (L[X]B/XL[X]B)
L[X]⊗β−−−−→

L[X]⊗β−−−−→ L[X](A + B)/XL[X](A + B) → 0

is exact. Since A and B are finitely generated, the L-dimension of
L[X]C/XL[X]C is 1 for C = A, B, or A+B. Therefore L[X]⊗β is not monic,
and therefore β is not monic. Now the kernel of β is a nonzero submodule of
the torsion-free K-module (A/XL[X]A) ⊕ (B/XL[X]B), each factor being
embeddable in L, the quotient field of K. But α maps onto the kernel of β,
and (A∩B)/XL[X](A∩B) is embedded in one copy of L. This proves that
α is monic.

Now the K-modules at both ends of β are finitely generated submodules
of direct sums of copies of L, and consequently they are finitely presented
([5], Theorem 2.1). It follows that the kernel (A∩B)/XL[X](A∩B) of α is
finitely generated ([2], Lemma 9, p. 21).

The Noetherian case is much easier to handle.

Theorem 2.4. The following conditions are equivalent:

(1) K + XL[X] is Noetherian.

(2) [L : K] < ∞.
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Proof. (⇒) Since XL[X] is a finitely generated ideal of K + XL[X], it
follows from Lemma 2.1 that K is a field and [L : K] < ∞. Thus, L[X] is
module-finite over the Noetherian ring K + XL[X].

(⇐) L[X] is a Noetherian ring and module-finite over the subring K+XL[X].
This is the situation covered by P. M. Eakin’s Theorem [9].

The Prüfer-domain case also presents little difficulty.

Theorem 2.5. The following conditions are equivalent:

(1) K + XL[X] is a Prüfer domain.

(2) L[X] is a Prüfer domain, L is the quotient field of K, and K is a
Prüfer domain.

Proof. (⇒) Since L[X] is a localization of K + XL[X], L[X] is a Prüfer
domain. Moreover, since Prüfer domains are integrally closed, L is the quo-
tient field of K, by Proposition 2.2. That finitely generated ideals of K are
invertible may be seen directly, or one can argue this, using the fact that the
faithfully flat K-module K + XL[X] is a Prüfer domain.

(⇐) Given a finitely generated nonzero ideal I of K + XL[X], we must
show that I is a projective K + XL[X]-module ([4], Proposition 3.2, p.
132). What comes to the same thing, since K + XL[X] is a domain ([15],
Corollary 3.2, p. 108), is to show that I is a flat K + XL[X]-module. Now
IL[X] = I ⊗K+XL[X] L[X] is L[X]-projective, since L[X] is a Prüfer domain.
Moreover,

0 ̸= I/XL[X]I ⊆ IL[X]/XL[X]L[X]I ∼= IL[X] ⊗L[X] (L[X]/XL[X]) ∼=
∼= IL[X] ⊗L[X] L,

a L-vector space. In particular, I/XL[X]I is a torsion-free K-module, and
K is a Prüfer domain. Consequently, I/XL[X]I is K-flat, and it follows from
the descent lemma of Ferrand that I is K + XL[X]-flat ([10], p. 946).

Recall that the class group C(S) of a Prüfer domain S is the multiplicative
group of invertible fractional ideals of S modulo the subgroup of nonzero
principal fractional ideals. The class group may also be regarded as the
multiplicative group of isomorphism classes of invertible fractional ideals of
S. In the construction of this paper, the class groups of the Prufer domains
K + XL[X], K, and L[X] are nicely related.
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Proposition 2.6. If K + XL[X] is a Prüfer domain, there exists an exact
sequence

1 → C(K)
α−→ C(K + XL[X])

β−→ C(L[X]) → 1,

where α[J ] = [J(K + XL[X])] and β[I] = [IL[X]] for all finitely gener-
ated fractional ideals J of K and I of K + XL[X]. Here, [I] denotes the
isomorphism class of the ideal I.

Proof. Clearly, α and β are well-defined homomorphisms. Also, since the
quotient field L of K is contained in T , βα[J ] = [J(K + XL[X])L[X]] =
[JL[X]] = [JLL[X]] = [L[X]] for each fractional ideal J of K. Thus
α(C(K)) ⊆ ker β. Suppose α[I] ∈ ker β. We may assume I is an inte-
gral ideal of K + XL[X], since [I] has such a representative. Therefore
IL[X] = xL[X], with x ∈ L[X]. Since L[X] = K + XL[X]K\{0} we may
choose x ∈ I, say x = k + m with k ∈ K and m ∈ XL[X]. Suppose
I = (K + XL[X])(k1 + m1) + · · · + (K + XL[X])(kt + mt) with ki ∈ K and
mi ∈ XL[X]. Then

ki + mi = (li + ni)(k + m) = li(k + m) + ni(k + m),

and therefore
li(k + m) = (ki + mi) − ni(k + m) ∈ I.

Therefore, I ⊇ (K + XL[X])(Kl1 + · · · + Klt)(k + m). Since XL[X] is an
ideal of L[X], we see that l−1

j XL[X] ⊆ XL[X] and hence (K + XL[X])ll ⊇
ljXL[X] ⊇ XL[X]. It follows that

(K + XL[X])(Kl1 + · · · + Klt)(k + m) ⊇ XL[X](k + m).

Hence, for 1 ⩽ i ⩽ t,

ki + mi = li(k + m) + ni(k + m) ∈ (K + XL[X])(Kl1 + · · · + Klt)(k + m).

But these elements generate I. Therefore, I = (K + XL[X])(Kl1 + · · · +
Klt)(k + m). Hence

[I] = [(K + XL[X])(Kl1 + · · · + Klt)] = α[Kl1 + · · · + Klt ].

It follows that ker β ⊆ α(C(K)) and therefore that ker β ⊆ α(C(K)).

It follows immediately from the relation L[X] = (K + XL[X])K\{0} that
β is an epimorphism. It remains only to show that α is monic. Suppose that
α[J ] = [K + XL[X]]. As before, we may assume that J is an integral ideal
of K. Since JXL[X] = XL[X] as above, J(K +XL[X]) = JK +JXL[X] =
J + XL[X]. Thus, J + XL[X] = (K + XL[X])(k + m) = Kk + XL[X],
because (K + XL[X])(k + m) ⊇ XL[X]. It follows that J = Kk, since both
sums are direct. Therefore, [J ] = [K] and α is monic.
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Remark 2.7. Our proof shows that when L[X] is a Bézout domain, each
finitely generated ideal I of K + XL[X] can be written in the form I =
(l1, . . . , ln, 1) · b ·K + XL[X] (li ∈ L, b ∈ I). In particular, I is K + XL[X]-
isomorphic to the extension of a finitely generated ideal of K. This is often
useful in cases where L[X] is a valuation domain or L[X].

Theorem 2.8. The following conditions are equivalent:

(1) K + XL[X] is a Bézout domain.

(2) L is the quotient field of K, and K is a Bézout domain.

Proof. Because Bézout domains are precisely the Prüfer domains having triv-
ial class group, the result follows from Theorem 2.5 and Proposition 2.6.

We can easily describe the prime-ideal lattice of K + XL[X] in case L is
the quotient field of K.

Proposition 2.9. Let L be the quotient field of K. If Q is a prime ideal of
K + XL[X], then either Q = P ∩ K + XL[X] for some prime ideal P of
L[X], or Q = P + XL[X] for some prime ideal P of K.

Proof. Because L[X] = K+XL[X]K\{0}, there exists a one-to-one correspon-
dence between primes of K + XL[X] that miss K \ {0} and primes of L[X].
On the other hand, if Q ∩K ̸= (0), let k ∈ Q ∩K, k ̸= 0. For m ∈ XL[X],
k−1m ∈ XL[X] ⊆ K + XL[X], and hence m ∈ Q. Therefore, Q ⊆ XL[X].
But K + XL[X]/XL[X] = K.

Consequently, the lattice of prime ideals of K + XL[X] looks like the
lattice of prime ideals of K “pasted” at XL[X] to that of L[X]. This gives
the following result.

Corollary 2.10. If L is the quotient field of K, and if K and L[X] have
finite Krull dimension, then K + XL[X] has finite Krull dimension equal to

max{heightL[X]XL[X]) + dim(K), dim(L[X])}.

A Prüfer domain S is said to have the n-generator property if each finitely
generated ideal of S can be generated by n or fewer elements. It is an open
question whether all Prüfer domains have the 2-generator property. As the
following result shows, the construction of this paper fails to shed new light
on this question.

Theorem 2.11. The following conditions are equivalent:
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(1) K + XL[X] is an n-generator Prüfer domain.

(2) L[X] and K are n-generator Prüfer domains.

Proof. (⇒) By Theorem 2.5, L[X] and D are Prüfer domains. Moreover,
L[X] is a localization of K + XL[X] and D is a homomorphic image of
K + XL[X].

(⇐) By Theorem 2.5, K + XL[X] is a Prufer domain. Let I = (a1, . . . , at)
be a nonzero finitely generated ideal of K+XL[X]. Since (K+XL[X])XL[X]

is a valuation domain, I(K + XL[X])XL[X] is principal generated by some
aj, which we may assume to be as. Then there exists u /∈ XL[X] such that
for 2 ⩽ j ⩽ t, aj = (rj/u)as with rs ∈ K +XL[X]. Thus, I is (K +XL[X])-
isomorphic to I(u/as) = (K + XL[X])u + (K + XL[X])r2 + · · · + (K +
XL[X])rt, which is an ideal of K + XL[X] not contained in XL[X]. It is
therefore harmless to assume that I ̸⊆ XL[X].

Thus, (I+XL[X])/XL[X] is a nonzero (K+XL[X]/XL[X])-submodule
of K + XL[X]/XL[X] = K. Since K is an n-generator Prüfer domain,

I +XL[X] = (K +XL[X])(k1 +m1)+ · · ·+(K +XL[X])(kn +mn)+XL[X]

with ki ∈ K, ki ̸= 0, and mi ∈ XL[X] for 1 < i < n. Because L[X] is also
an n-generator Prüfer domain, IL[X] = L[X](l1 +m1) + · · ·+L[X](ln +m′

n)
with li ∈ L and m′

i ∈ XL[X]. Now, since I ̸⊆ XL[X], some li ̸= 0, say
ls ̸= 0. We may assume, in fact, that li ̸= 0 for each i; for if this is not
already the case, we can replace li + m′

i with (ls + ms) + (li + m′
i). But then

IL[X] = L[X](k1 + m′′
1) + · · · + L[X](kn + m′′

n),

where m′′
i = l−1

i kim
′′
i since ki + m′′

i = kil
−1
i (li + m′

i) and kil
−1
i is a unit in

L[X].

We claim that I = (k1 + m′′
1, . . . , kn + m′′

n)(K + XL[X]). It suffices to
verify that this equality holds locally at each maximal ideal P of K+XL[X].
By Proposition 2.9, there are two types of maximal ideals, those that contain
XL[X] and those that have trivial intersection with K. If P is a maximal
ideal of K +XL[X] with P ∩K = (0), then (K +XL[X])PL[X] = L[X]PL[X],
and the desired equality certainly holds since it already holds when the ideals
are extended to L[X]. Now suppose that P is a maximal ideal of K +XL[X]
with P ⊃ XL[X]. Before considering what happens in this case, note that if
A is an ideal of K+XL[X] not contained in XL[X], then A(K+XL[X])P ⊃
XL[X](K+XL[X])P . This is because these ideals must be comparable, since
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(K + XL[X])P is a valuation domain. But if XL[X](K + XL[X])P ⊇ A,
then

A ⊆ A(K + XL[X])P ∩K + XL[X] ⊆ XL[X](K + XL[X])P ∩K + XL[X] =

= XL[X],

since XL[X] is prime in K + XL[X]. In particular, if k ∈ K, k ̸= 0,
and m ∈ XL[X], then (k + m)(K + XL[X])P ⊇ XL[X](K + XL[X])P and
k(K+XL[X])P ⊇ XL[X](K+XL[X])P . Therefore, (k+m)(K+XL[X])P =
k(K + XL[X])P . It is apparent from these observations that

I(K + XL[X])P = I(K + XL[X])P + XL[X](K + XL[X])P =

= (k1 + m1)(K + XL[X])P + · · · + (kn + mn)(K + XL[X])P+

+ XL[X](K + XL[X])P = (k1 + m1)(K + XL[X])P + · · ·+
+ (kn + mn)(K + XL[X])P = (k1, . . . , kn)(K + XL[X])P =

= (k1 + m′′
1, . . . , kn + m′′

n)(K + XL[X])P .

Our next result concerns GCD-domains, and we refer the reader to ([11],
Appendix 4, p. 601) and ([16], pp. 32-33) for the relevant facts. We remark
that Bezout domains and unique-factorization domains afford the most com-
mon examples of GCD-domains.

We shall adopt the following notation. Let S be a domain, and suppose
that B is a torsion-free S-module. If 0 ̸= b1, b2 ∈ B, we shall write c =
infS(b1, b2) provided c ∈ B, Sc ⊇ Sb1 + Sb2, and Sc is the minimal principal
S-submodule of B containing Sb1+Sb2. When infS(b1, b2) exists, it is unique
to within multiplication by a unit of S. It is easily verified that S is a GCD-
domain if and only if infS(l1, l2) exists for all 0 ̸= l1, l2 belonging to the
quotient field of S.

Theorem 2.12. The following conditions are equivalent:

(1) K + XL[X] is a GCD-domain.

(2) L is the quotient field of K, K is a GCD-domain, and L[X]XL[X] is a
valuation domain.

Proof. (⇒) By Proposition 2.2, since GCD-domains are integrally closed
([16], Theorem 50, p. 33), L is the quotient field of K and L[X]XL[X] is a
valuation domain. Moreover, L[X], being a localization of K + XL[X], is a
GCD-domain, and K, being a retract of K +XL[X], is also a GCD-domain.
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(⇐) We begin with two observations.

First, if S is an integral domain contained in a field K + XL[X]/XL[X]
and if 0 ̸= a, b, c ∈ K + XL[X]/XL[X] are such that infS(b, c) exists, then
infS(ab, ac) exists and is equal to a · infS(b, c).

To see this, note that the map a : XL[X] → XL[X] is an S-homomorphism.
Moreover, the map is monic, because XL[X] is S-torsion-free and epic since
XL[X] is S-divisible. Thus, the map is an S-automorphism of XL[X]. Con-
sequently, it induces a one-to-one inclusion-preserving correspondence be-
tween the S-submodules of XL[X] containing Sb and Sab and also between
Sc and Sac. Since corresponding submodules are isomorphic, they require the
same number of S-generators. Therefore, if there is a principal S-submodule
of XL[X] minimal over Sb + Sc, then there is a principal S-submodule of
XL[X] minimal over Sab + Sac and it is induced by multiplication by a.

Second, let t1 = l1+m1 and t2 = l2+m2 belong to L[X], with m ∈ XL[X]
and li ∈ L and not both l1, l2 equal to zero. Because L[X] is a GCD-domain,
infL[X](t1, t2) exists and has the form l3 + m3, with m3 ∈ XL[X] and l3 ∈ L,
l3 ̸= 0, since L[X]t1 + L[X]t2 ̸⊆ XL[X]. Furthermore, infD(l1, l2) = l ̸= 0
exists because K is a GCD-domain with quotient field L. Because ll−1

3 is a
unit in L[X], we may assume that

inf
L[X]

(t1, t2) = l + m

with m ∈ XL[X]. For this choice, a straight-forward calculation shows that
l + m = infK+XL[X](t1, t2).

Now, let a and b be nonzero elements of K + XL[X]. Since L[X]XL[X]

is a valuation domain, aL[X]XL[X], and bL[X]XL[X] are comparable, say a =
(t/u) · b with t ∈ L[X] and u ∈ L[X] \XL[X], both nonzero. Thus, ua = tb.
By our first observation, if infK+XL[X](ta, tb) exists, then infK+XL[X](a, b)
exists and is equal to (1/t) · infK+XL[X](ta, tb). But infK+XL[X](ta, tb) =
infK+XL[X](ta, ua). Again applying our first observation, we see that if
infK+XL[X](t, u) exists, then infK+XL[X](at, au) exists and is equal to a ·
infK+XL[X](t, u). By our second observation, infK+XL[X](t, u) does exist since
u /∈ XL[X], so that u = m + l, where l ̸= 0. This completes the proof.

We conclude by describing two large classes of domains, different from
those previously studied, admitting an arbitrary field L as retract, and to
which the program of this paper can be applied.

Let S be an abelian, torsion-free, cancellative semigroup with 0, and
L a field. The semigroup rings L[S] can be regarded as generalizations of
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polynomial rings. Conditions on S for L[S] to be a Prüfer domain, Bézout
domain, GCD domain, and so forth are given in [13]. Moreover, L[S] contains
a maximal ideal M , the so-called augmentation ideal, with the property that
L[S] = L + M . For most choices of S, L[S] is neither Noetherian nor a
polynomial ring, and L[S] is never a valuation domain.

Finally, let K be an algebraically closed field, and let L be a field of
algebraic functions of a single variable over K having positive genus. It is
well known that by intersecting all but one of the DVR’s on L that contain
K, one obtains a Dedekind domain S having infinite class group and the
additional property that S = K + M for each maximal ideal M of S.
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