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Abstract

In this article, we introduce the concept of a square-free ideal in any
ring. We study equivalent definitions and some algebraic properties.
In addition, we reformulate Hilbert’s Nullstellensatz for square-free
ideals. We also study ideals in Boolean rings that are square-free. In
the second part of this article, we discuss an SR condition and examine
this condition against other conditions such as atomicity, AP, ACCP,
factoriality in a commutative cancellative monoid.

1 Introduction

By a ring we mean a commutative ring with unit. The domain is a ring
(commutative with unit) without zero divisors. Whereas by a monoid we
mean a commutative cancellative monoid. For a given ring R, by R∗ we
denote a group of invertible elements of R.

The motivations for this article come from different directions. The first
direction is the theory of radical ideals. First of all, it comes from the works
of A. Reinhart’s [9] and [8], where in 2012 he introduced the concept of
the radical element in [9]. An element of a monoid is called radical if the
principal ideal generated by this element is a radical ideal. The set of all
radical elements in the monoid/ring R we denoted by Rad(R). Let us recall
the definition of the radical ideal:
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Definition 1.1. Let R be a ring. The ideal I of R is called a radical ideal if
for any x ∈ I, n ∈ N, if xn ∈ I, then x ∈ I.

It is well known that any maximal ideal of R is a prime ideal, and every
prime ideal is radical, as can easily be proved. On the other hand, it is
known that any prime element is an irreducible and that any prime element
is a radical element of R. In [3] it was shown that any radical element is
square-free. Recall:

Definition 1.2. We call an element s ∈ R square-free if we cannot represent
it as s = x2y, where x, y ∈ R, but x /∈ R∗. The set of square-free elements
of the ring/monoid R is denoted by Sqf R.

It is very obvious that any irreducible element is square-free. Thus, seeing
some relations between irreducible, prime, radical, and square-free elements
and maximal, prime, radical, and square-free ideals, we can define a square-
free ideal of R that would be a radical ideal, but any maximal ideal would
be a square-free.

In the section 2 in the Definition 2.1 we present a definition of a square-
free ideal, which is analogous to the definition of a square-free number. In
Theorem 2.3 we present five more equivalent definitions of the square-free
ideal. However, if we consider square-free ideals in a Dedekind ring, we can
use an additional equivalent definition (Corollary 2.4). Recall, the ring R
is called a Dedekind ring if every non-zero proper ideal can be represented
as a product of prime ideals. Just as the prime, maximal and radical ideals
have their interpretation on quotient rings, in Theorem 2.5 we present an
interpretation for the square-free ideal, i.e. R/I is not a Boolean ring (or is
a non-Boolean ring). Recall:

Definition 1.3. A ring R is called a Boolean ring if x2 = x for each x ∈ R,
i.e. eevery x is idempotent.

This means that the ring in which we find a non-idempotent will be called
a non-Boolean ring. The statements 2.6, 2.10 show that every maximal ideal
is square-free and then is radical.

Guided by the theory of radical ideals, it is not difficult to come across
Hilbert’s Nullstellensatz, which is very well known in algebraic geometry.
This theorem says that there is a mutually unambiguous correspondence
between the algebraic sets in Kn and the radical ideals in K[T ], where K is
an algebraically closed field. Therefore, another question arose. Since every
square-free ideal is radical, but not vice versa, there are radical ideals that
are square-free and there are radical ideals that are not square-free (see 2.11,
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2.12). So, is it possible to reformulate Hilbert’s Nullstellensatz for radical
ideals that are square-free and which are not? The answer is positive. For
radical square-free ideals there is a one-to-one correspondence with smooth
manifolds in Kn (Theorem 3.2), and for non-square-free radical ideals there
is one-to-one correspondence with unequal manifolds in Kn (Theorem 3.3).
In both cases, of course, K is an algebraically closed field.

Section 4 is motivated by Theorem 2.5 which says that the ideal I of the
ring R is a square-free ideal if and only if R/I is not a Boolean ring. Equiv-
alent conditions for the square-free ideal (Theorem 2.3) prompted thinking
about idempotents, and at first it was superficial to think that square-free
ideals had a great deal to do with Boolean rings. Therefore, the section 4 was
created by initial misconceptions and deals with considerations of Boolean
rings. As it turned out, square-free ideals are related to non-boolean rings,
and in the section 4 we present some very interesting results about ideals in
Boolean rings. In Theorem 4.1 we show that all ideals in a Boolean ring are
square-free. On the other hand, in Theorem 4.2 we show that the concepts
of prime, maximal, square-free, radical and primary ideals are equivalent.
Recall that the ideal I of the ring R is called a primary ideal if for any x,
y ∈ R the condition xy ∈ I implies that either x ∈ I or yn ∈ I for some
n ∈ N.

The motivation of the section 5 is to work on square-free and radical
factorizations in any monoid (cancellative commutative). Of course, the focus
is on monoids, but the results transfer analogously to any commutative rings
with unit without zero divisors. Many results can be found in the articles
[4], [3], [5], [7]. In [5] Sections 3, 4 and [7] Sections 4, 5 we show different
conditions for square-free and radical factorizations in monoids with certain
properties: factoriality, ACCP, atomicity, GCD, pre-Schreier, AP, SR. Let
us recall the definitions from papers [5], [7]:

Definition 1.4. A monoid H is called

(a) a GCD-monoid if any two elements have their greatest common divisor.

(b) a pre-Schreier monoid if any element a ∈ H satisfies the condition
that for any b, c ∈ H such that a | bc there are a1, a2 ∈ H such that
a = a1a2, a1 | b and a2 | c. The name comes from the Austrian
mathematician Otto Schreier, who defined Schreier rings (completely
closed rings satisfying the above condition). Pre-Schreier rings reject
complete closure.

(c) atomic if each element of a ∈ H \H∗ is the product of a finite number
of irreducible elements (atoms).
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(d) factorial if for any non-invertible element a ∈ H the element a can be
uniquely represented as a product of primes. In rings, the equivalent is
an unique factorization domain.

(e) an ACCP-monoid if any ascending chain of principal ideals of H stabi-
lizes, i.e. for any sequence of principal ideals a0H ⊂ a1H ⊂ a2H ⊂ . . .
exists m ∈ N0 such that anH = amH for any n ⩾ m.

(f) an AP-monoid if any non-invertible element of H is prime.

(g) an SR-monoid if any square-free element of H is a radical element.

The definition of a pre-Schreier monoid was introduced by Zafrullah in
[10]. The definition of an SR-monoid was defined in [5]. Although the SR
condition is used in the context of factorization, some basic properties of such
a condition have been developed in this article. In addition, in the sections 5
and 6, we complete the dependencies between these conditions. Then, taking
into account the new results, we obtain the following relationship:

factorial ⇒ ACCP ⇒ atm ⇒ SFD ⇐ RFD
⇓ ⇑ ⇑ ⇒ ⇑

GCD ⇒ pSch ⇒ AP ⇒ SR

In the diagram we also have RFD and SFD properties that have been
included. These are the conditions 0r and 0s found in papers [5] and [7], i.e.

Definition 1.5. A monoid H is called RFD/SFD-monoid (radical factor-
ization domain/square-free factorization domain), if for every non-invertible
element a ∈ H there exist r1, r2, . . . , rn ∈ RadH/ Sqf H such that

a = r1r2 . . . rn.

It is worth noting that Reinhart in [9] investigates the properties of rad-
ically factorial monoids (RFD property). In addition, it is worth extracting
the relationships between the properties of factoriality, atomicity, RFD and
SFD. These definitions are almost identical due to the factorization of the
elements, but depending on what elements we decompose.

factorial ⇒ atm
⇓ ⇓

RFD ⇒ SFD

In addition, in the section 6, we complete some properties of the square-
free and radical factorial monoids, where we obtain the following relations:
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atm + AP ⇔ faktorialny
SR + SFD ⇒ RFD
SR + atm ⇒ RFD

2 Square-free ideals

In this section we define the notion of a square-free ideal in any ring. We
will show the basic properties that are studied in the case of prime, maximal
and radical ideals. We will also show that square-free ideals are related to
non-Boolean rings.

Definition 2.1. Let R be a ring. The ideal I of R is called a square-free
ideal if we cannot express in the form

I = J2K,

where J , K are ideals of R, with J being a proper ideal.

Example 2.2. If n ∈ Sqf Z, then (n) = nZ is a square-free ideal. Moreover, if
n is not prime, then the ideal (n) is not a maximal ideal, because is contained
in the proper ideal (p) where p | n.

In the following theorem we will introduce several equivalent conditions
for the definition of the square-free ideal, which we will use in later results.

Theorem 2.3. Let R be any ring. Let I be the ideal of R. Then the following
conditions are equivalent:

(a) I is a square-free ideal.

(b) For each a ∈ R there are at most one element b, c ∈ R such that b2 | a,
c2 mida imply b ∼I c (b and c are associated with I).

(c) For each x ∈ R, if x2 ∈ I, then x ∈ I.

(d) For each x, y ∈ R, if x2y ∈ I, then xy ∈ I.

(e) I is not contained in any ideal J2, where J is a proper ideal of the ring
R.

(f) For any x ∈ R x2 − x ∈ I holds.
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Proof. (b) ⇒ (a) Assume (b). Suppose I = J2K, where J , K are ideals of
R, J is proper. Let a ∈ J . Then a2 ∈ J2 ⊆ J2K = I. By assumption, we
know that there is at most one element in b ∈ R such that b2 | a2 in I. But
we also know that a | a2 in I and (aK) | (aK)2 ⊆ J2K = I. So a ∼ aK
or u ∈ R∗ such that uaK = a or ua ∈ K exists. Since J is proper, then
u ̸= ±is1, so ua ̸= ±a. That is, ua ∈ K \ {±a}. But this means that K is
not proper because it contains an element outside of {±a} that divides ±a,
i.e. it contains an invertible element. Contradiction.

(a) ⇒ (c) Assume (a). Let x ∈ R such that x2 ∈ I. Suppose x /∈ I.
Then consider the ideal J := xR + I, which is proper because it does not
contain unit (if it did, the condition 1 = ax + b, a, b ∈ R implies that
x = (1 − b)a−1 ∈ I, contradiction).

Note that J2 ⊆ I because if c, d ∈ J , then c = ax1 + b1, d = ax2 + b2,
where a, b, x1, x2 ∈ R and we have cd = a2x1x2 + ab1x2 + ab2x1 + b1b2. Since
x2 ∈ I, then a2x1x2 ∈ I and ab1x2 ∈ I, ab2x1 ∈ I. Also b1b2 ∈ I, because
b1, b2 ∈ I. So cd is the sum of the elements of I, so cd ∈ I. Hence J2 ⊆ I.
But that means I = J2K. Contradiction with the assumption, because J is
a proper ideal.

(c) ⇒ (d) Assume (c). Let x, y ∈ R such that x2y ∈ I. Then x2y2 =
(xy)2 ∈ I. By assumption we have xy ∈ I.

(d) ⇒ (b) Assume (d). Let a ∈ R such that b2 | a, c2 | a for some
b, c ∈ R. That is, there are d, e ∈ R such that a = b2d, a = c2e. Then
b2d, c2e ∈ aR. From (d) we have that bd, ce ∈ aR. Then there are f , g ∈ R
such that bd = af , ce = ag. Since a = b2d = c2e, then the equations
bd = b2df , ce = c2eg show that b, c ∈ R∗. So b ∼I c.

(a) ⇔ (e) Obvious.

(c) ⇒ (f) Of course, if x ∈ I, then x2 ∈ I. The assumption is that if
x2 ∈ I, then x ∈ I. So x2 − x ∈ I.

Let’s assume (f). Let x, r ∈ R and x2 ∈ I. Then rx2 = (rx)x = x(rx)
belongs to I. So rx2−rx = rx(x−1) belongs to I. But since rx2−rx ∈ I, the
assumption is that rx ∈ I. And since rx ∈ I for any r ∈ R, then especially
for r = 1 we have x ∈ I.

Corollary 2.4. If in the above theorem we assume that R is a Dedekind ring,
then conditions (a) – (f) are equivalent to the following condition:

(g) I = M1 . . .Mn, where Mi are pairwise maximal ideals for i = 1, 2, . . . n.
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In Theorem 2.5 we present an interpretation of the quotient ring R/I,
where I is a square-free ideal in the ring R.

Theorem 2.5. Let R be an integral domain. Then the following conditions
are equivalent:

(a) The ideal I of the ring R is a square-free ideal.

(b) The quotient ring R/I is not a Boolean ring.

Proof. (a) ⇒ (b) Suppose that R/I has some idempotent different from
0 and 1. That is, there is an element r ∈ R such that (r + I)2 = r + I,
r + I ̸= 0, r + I ̸= 1. Then we have r2 + I = r + I, which is r2 − r ∈ I. Note
that r2 − r = r(r − 1). Since I is a square-free ideal, we cannot represent it
as I = J2K, where J and K are ideals, J proper. So neither J nor K can
be trivial ideals. But since r(r − 1) ∈ I = J2K, then either r ∈ J or r ∈ K
or r − 1 ∈ J or r − 1 ∈ K. Contradiction.

(b) ⇒ (a) Suppose that I is not a square-free ideal. That is, there
are ideals J and K such that I = J2K and J is proper. Let’s take any
element r ∈ J but r /∈ K. Such an element exists because J is proper. Then
r2 ∈ J2 ⊂ I, which is r2 + I = 0 + I in R/I. So (r + I)2 = 0 + I. On the
other hand, since r /∈ K, then r is not in J2K = I, which is r + I ̸= 0 + I in
R/I. So (r + I)2 ̸= r + I in R/I. We have found that r + I is idempotent
different from 0 and 1 in R/I. Contradiction with the assumption that R/I
is a ring without idempotents.

Now we will discuss the relationship between square-free ideals and other
ideals.

Proposition 2.6. If I is a maximal ideal of R, then I is a square-free ideal
of R.

Proof. 1st way:
Suppose I is a maximal ideal of R, and suppose I is not a square-free ideal.
Let x ∈ R such that x2 ∈ I. Then J := xR+I. But I ⊂ J and I is maximal.
Contradiction. So x = 0 (then J = I) or x ∈ I (then also J = I + I = I).

2nd way:
If I is a maximal ideal, then the quotient ring R/I is a field. By the Lemma
2.13 (which we will prove later), R/I is not a Boolean ring. By Theorem 2.5
we have that I is a square-free ideal.

Corollary 2.7. Any ideal of R is contained in some square-free ideal.
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Proof. This follows from the statement that any ideal is contained in some
maximal ideal, and every maximal ideal is a square-free ideal.

Example 2.8. An ideal (0) is square-free, but is not maximal.

Example 2.9. An ideal (x2 +1) of Q[x] is square-free. If it wasn’t, then x2 +1
would have to be divisible by the square of the irreducible polynomial. But
x2+1 is irreducible in Q[X], contradiction. This ideal is not maximal because
it is contained in the ideal (x2 + 1, x + 1).

Proposition 2.10. If I is a square-free ideal of R, then I is a radical ideal
of R.

Proof. Let x ∈ R such that xn ∈ I for any n ∈ N. Since I is a square-free
ideal, then n = 1, and so x ∈ I. Hence I is a radical ideal.

In the examples below, we show that the converse statement of Proposi-
tion 2.10 is not true.

Example 2.11. An ideal (x2) of Q[x] is radical, because its radical is (x),
which contains in (x2), and we have Rad(x2) ⊂ (x2). But ideal (x2) is not
square-free, because (x2) = (x)2

Example 2.12. An ideal (x3, y2) is radical of Q[x], because Rad(x3, y2) =
(x, y) ⊂ (x3, y2). This ideal is not square-free because (x3, y2) = (x, y)2(x, y).

Lemma 2.13. Let R be a field. Then R is not Boolean ring.

Proof. Suppose that R is a Boolean ring. Then every element in R is idem-
potent, i.e. x2 = x for every x ∈ R. Let’s consider two cases:

Let R be of the characteristics zero. Then for every natural number n we
have n1 ̸= 0. So we can write: (n1)2 = (n1)(n1) = n21 and (n1)2 = n1.
Comparing these two equations we get: n(n − 1) = 0. Since n is a positive
integer, then n ̸= 0 and n − 1 ̸= 0. So we have a contradiction with the
assumption that R has no zero divisors (since R is a field).

Now let R be the characteristics of p, where p is prime. Then for every
positive integer n we have pn1 = 0. So we can write: (pn1)2 = (pn1)(pn1) =
p2n21 and (pn1)2 = pn1. Comparing these two equations we get: p(pn−n) =
0. Since p is prime, then p ̸= 0 and pn− n ̸= 0. So we have a contradiction
with the assumption that R has no zero divisors.
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3 Hilbert’s Nullstellensatz for square-free ide-

als

From Proposition 2.10 we know that any square-free ideal is radical in
the ring R. The examples 2.11 and 2.12 show that Proposition 2.10 cannot
hold in the reverse case. So we have two kinds of radical ideals. Those that
are square-free and those that are not square-free. A question has arisen that
relates to Hilbert’s Nullstellensatz.

Theorem 3.1 (Hilbert’s Nullstellensatz). Let K be an algebraically closed
field. There is a mutually unambiguous correspondence between the algebraic
sets in Kn and the radical ideals in K[T ].

Can the above theorem be transformed into radical ideals that are square-
free and into radical ideals that are not square-free? It turned out that we
can and we present the results below.

Theorem 3.2. Let K be an algebraically closed field. There is a mutually
unambiguous correspondence between square-free ideals in K[T ] and smooth
manifolds in Kn.

Proof. We first show that if I is a square-free ideal in K[T ] then V (I) is a
smooth manifold. Equivalently, we will show that for every P ∈ V (I) the
Jacobian matrix of the system of equations with I has full rank in P .

Suppose that there is a point P ∈ V (I) at which the Jacobian matrix
of the system of equations with I has a rank less than n. Then there is
a non-zero vector v belonging to the Jacobian matrix in P . Let f1, . . . , fm

be ideal generators I. Then we have
∂fi
∂xj

(P )vj = 0 for each i = 1, . . . ,m,

j = 1, . . . , n. Let g(x) = fi(x+ tv), where t is an additional variable. Then g
is a polynomial of one variable and we have g(P ) = 0 and g′(P ) = 0 for each
i. So g has a double root in P for each i. But that means (x − P )2 | g(x),
which is (x−P )2 ∈ I. Since I is a square-free ideal, then (x−P ) ∈ I, which
means that V (I) is a one-point set. Contradiction to the assumption that I
is irreducible. So V (I) is a smooth manifold.

We now show that if V is a smooth manifold, then I(V ) is a square-
free ideal in K[T ]. Suppose that there is a polynomial f ∈ K[T ] such that
f 2 ∈ I(V ) but f /∈ I(V ). Then f does not vanish across V , so there is a
point p ∈ V such that f(p) ̸= 0. Since V is a smooth manifold, the Jacobian
matrix of the system of equations with I(V ) has full rank in p. So there is a
vector v belonging to the Jacobian kernel in p. Let g(t) = f(p + tv), where
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t is an additional variable. Then g is a polynomial of one variable and we
have g(0) = f(p) ̸= 0, g′(0) = 0. So g has a single root in 0. But that means
t−0 | g(t), which is t−0 | f(p+tv) for every t ∈ K. Since p+tv ∈ V (because
V is closed), we get a contradiction with the assumption that f 2 ∈ I(V ). So
I(V ) is a square-free ideal.

Theorem 3.3. Let K be an algebraically closed field. There is a mutually
unambiguous correspondence between non-radical square-free ideals in K[T ]
and unequal manifolds in Kn.

Proof. We will show that if I is a non-radical square-free ideal in K[T ] then
V (I) is an unequal manifold.

Suppose that there is a point p ∈ V (I) where the Jacobian matrix of the
system of equations with I has full rank. Then there is a local isomorphism
between the neighborhood of p and the neighborhood of 0 in Kn. So V (I)
is locally equal to p. But this means that I is a square-free ideal in the
neighborhood of p, a contradiction.

We will show that if V is an unequal manifold, then I(V ) is a square-free,
non-radical ideal in K[T ].

Since V is an unequal manifold, there exists a point p ∈ V where the
Jacobian matrix of the system of equations with I(V ) is of rank less than
n. Then there is a non-zero vector v belonging to the Jacobian matrix at
p. Let f(x) = xv, where x = (x1, . . . , xn). Then f is a linear polynomial

and we have
∂f

∂xj

(p)vj = v2j for every j = 1, . . . , n. Let g(t) = f(p + tv),

where t is an additional variable. Then g is a quadratic polynomial and we
have g(0) = 0, g′(0) = 0. So g has a double root in 0. But that means
(t− 0)2 | g(t) = f(p + tv)2 for every t ∈ K. Since p + tv ∈ V (because V is
closed), we get f 2 ∈ I(V ). However, f /∈ I(V ) because f(p) ̸= 0.

Example 3.4. (1) Let X = {1, 2}. Then I(X) = (T − 1, T − 2) is a square-
free ideal and V = {1, 2}. The set V is a smooth manifold.

(2) Let X = {0, 1}. Then I(X) = (T, T − 1) is a radical non-square-free
ideal and V = {0, 1} is an unequal manifold with singularities at 0.

(3) An ideal I = (T 2+1) is square-free in K[T ], whereas V (I) = is smooth.

(4) An ideal I = (T 3 − T ) is radical non-square-free in K[T ], whereas
V (I) = {0, 1,−1} is an unequal manifold with singularities at 0.
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4 Boolean ring

Initially it was thought in Theorem 2.5 that the ideal I is square free if
and only if R/I is a Boolean ring. Of course, the truth is different. But
in connection with this, ideals in the Boolean ring began to be considered,
where, as it turned out, all ideals are square-free.

Theorem 4.1. Let R be a Boolean ring. Then all ideals of R are square-free.

Proof. Let R be a Boolean ring and let I be an ideal in R. Suppose that I is
not a square-free ideal, i.e. there are ideals J and K in R such that I = J2K,
where J is proper. Let x ∈ J . Then x2 ∈ J2, so x2 ∈ I. Because x2 = x,
so x ∈ I. So J is a proper subset. Let y ∈ I. Then y2 ∈ I because every
element of a Boolean ring is idempotent. So I is a subset of I2. Since I2 is
a subset of I, then I = I2. Since I = I2, we cannot have I = J2K, where J
is a proper subset of I. We got a contradiction with the assumption. So I is
a square-free ideal.

Perhaps the fact that all ideals in a Boolean ring are square-free is surpris-
ing, the following Theorem shows us that the concepts of prime, maximal,
square-free, radical, and primary ideals are equivalent.

Theorem 4.2. Let R be a Boolean ring and let I be an proper ideal in R.
Then the following conditions are equivalent:

(a) An ideal I is prime.

(b) An ideal I is maximal.

(c) An ideal I is square-free.

(d) An ideal I is radical.

(e) An ideal I is primary.

Proof. Of course, there are the following implications:

(b) ⇒ (a) ⇒ (d).

Also, from Proposition 2.6) we get (b) ⇒ (c), and from Proposition 2.10 we
get (c) ⇒ (d). Of course, we also have (a) ⇒ (e).

(a) ⇒ (b) Let I be a prime ideal, and suppose I is not a maximal ideal.
Then there is an ideal J in R and x ∈ R such that x ∈ J \ I. Since R is a
Boolean ring, then x2 = x. Then x(x− 1) = 0. Since I is prime, then x ∈ I
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or x − 1 ∈ I (because 0 ∈ I). If x ∈ I, then we have a contradiction. If
x− 1 ∈ I, then x ∈ I + (1) = R, contradiction. So I is a maximal ideal.

(d) ⇒ (a) Let I be a radical ideal, and suppose it is not a prime ideal,
that is, there are a, b ∈ R such that ab ∈ I, a /∈ I, b /∈ I. Since ab ∈ I, then
(ab)n ∈ I. But R is a Boolean ring, so (ab)n = ab. So ab ∈ Rad(I), which
is a ∈ Rad(I) or b ∈ Rad(I). Suppose a ∈ Rad(I). This means am ∈ I for
some m. But R is a Boolean ring, so am = a. So a ∈ I, a contradiction. We
prove similarly for b ∈ Rad(I). So I is a prime ideal.

(e) ⇒ (d) Let I be a primary ideal. Let a ∈ R. Then a2 = a because
R is a Boolean ring. So if a ∈ Rad(I) then an ∈ I for some n. But then
a = an ∈ I. So Rad(I) ⊂ I.

On the other hand, if a ∈ I and M is a maximal ideal containing I,
then a ∈ M . So I is included in Rad(I) because Rad(I) is also the Jacobson
radical of the ideal I, that is, the intersection of all maximal ideals containing
I. So I = Rad(I) and I is a radical ideal.

Corollary 4.3. In a Boolean ring, all ideals are simultaneously maximal,
prime, square-free, radical, primary.

Note the following fact.

Theorem 4.4. Let R be a field of 2 with more than 2 elements. Then R is
not a Boolean ring.

Proof. Let R be a field of characteristic q. By R∗ let us denote the mul-
tiplicative group of the field R. This group is cyclical. Then there is an
element a ∈ R∗ such that R∗ = {1, a, a2, . . . , aq}, where q is the number of
elements in the field R. If a is idempotent then a2 = a and a = 1 or a = 0.
But a ̸= 0 because a ∈ R∗ and a ̸= 1 because R∗ has more than one element.
So a cannot be idempotent. So R cannot be a Boolean ring.

Corollary 4.5. The field of the characteristic 2 with 2 elements is a Boolean
ring.

Although a Boolean algebra is not the same as a Boolean ring, there has
been interest in Boolean rings which may be isomorphic to certain Boolean
algebras.

Example 4.6. The field Z2 is a Boolean ring. It is isomorphic to a Boolean
algebra with two elements 0 and 1.

Example 4.7. The set of all subsets of the fixed set X is a Boolean ring. It
is isomorphic to the Boolean algebra B where |B| = 2|X|.
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Example 4.8. Zn
2 is a finite dimensional Boolean ring. It is isomorphic to the

Boolean algebra of n logical variables or as a set of n-bit binary words with
XOR and AND.

Example 4.9. The set of continuous functions f : R → {0, 1} with pointwise
addition and multiplication modulo 2 is a Boolean ring of uncountable di-
mension. Such a set of continuous functions is isomorphic to the Boolean
algebra of logical functions, a set of continuous digital signals.

Example 4.10. A ring of boolean functions, where the elements are boolean
functions on some set X (i.e. functions that take the value 0 or 1), and the
operations are a logical union and product. The ring of boolean functions is
isomorphic to the ring of residuals modulo 2n, where n is the number of all
boolean functions in X.

Example 4.11. The Boolean ring modulo n is isomorphic to the ring of regular
functions on an algebraic manifold given by the equation x2n − 1 = 0 over
F2.

Example 4.12. A Boolean ring modulo n is isomorphic to a Boolean algebra
on the set of residuals modulo n. It suffices to show that the mapping
f : Zn → Bn given by f(x) = x(x− 1) (mod n) is an isomorphism.

5 SR condition

The concept of the SR condition was created in the papers [5] and [7], but
in the context of factorial properties. In this section, we will show the rela-
tionship between the SR condition and other known conditions. Considering
the previous section, it can be concluded that every Boolean ring satisfies
the SR condition, since the notion of a radical element coincides with the
notion of a square-free element. Recall that in every ring the radical element
is square-free, but the reverse is not generally true. Thus, the need arose to
be interested in rings and monoids in which the square-free element will be
radical.

Example 5.1. Let V be the valuation domain with its maximum ideal M .
Let K be its fraction field other than V such that M−1 = V , and let L
be a non-trivial extension of K. Then D = V + XL[[X]] satisfies the SR
condition, but is not pre-Schreier.

Proposition 5.2. If H is atomic then H is SR.

Proof. Suppose a ∈ Sqf H and let a | xn for any x ∈ H. Then there is y ∈ H
such that ay = xn.

13



Since H is atomic, a and xn can be represented as products of a finite
number of irreducible elements. Let a = p1p2 . . . pk and xn = q1q2 . . . qm be
such products. Then

ay = p1p2 . . . pky = q1q2 . . . qm.

Since a is a square-free element, none of the factors of pi is a square of
some non-invertible element. Therefore, each of the factors pi must be a
prime element, otherwise it could be decomposed into two non-zero elements
different from each other and from one. Since each of the factors pi is a
prime element, it divides the product q1q2 . . . qm if and only if it divides one
of the factors qj. So each of the factors in pi must also divide x, because x is
q1q2 . . . qm raised to the power of 1/n.

Since each pi divides x, then p1p2 . . . pk also divides x. But the product
of p1p2 . . . pk equals a, so a | x.

Proposition 5.3. If H is an AP -monoid, then H is an SR-monoid.

Proof. Let H be a monoid satisfying the condition AP , i.e. every irreducible
element is a prime element. Let x ∈ H be a square-free element. We want
to show that x is a radical element.

If x is invertible or zero, then the proof is trivial. So let’s assume that x
is non-invertible and non-zero. Then we can represent x as the product of a
finite number of irreducible elements (because H is an atomic monoid):

x = p1p2 . . . pk,

where pi are irreducibles and primes. Now suppose x | rn for some r ∈ H
and n ∈ N. Then there is q ∈ H such that rn = xq. From the properties of
prime elements, it follows that every factor on the left side must be in the
right side, and vice versa. So we have:

rn = pa11 pa22 . . . pakk q,

where ai ∈ N. Because rn is a power of r, then it must be that:

r = pb11 p
b2
2 . . . pbkk s,

where bi are positive integers and s is invertible or null. Raising both
sides to the n power, we get:

rn = pnb11 pnb22 . . . pnbkk sn.

Comparing both sides of the equality, we get:
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nbi = ai

for any i ∈ {1, 2, . . . , k}. Since n > 0 i ai ⩾ 0, it must be that bi > 0 for
any i ∈ {1, 2, . . . , k}. So we have:

x = p1p2 . . . pk | pb11 pb22 . . . pbkk s = r

which ends the proof.

Recall that the R monoid/ring satisfies the SFD condition when for
any non-zero element a ∈ R there are s1, s2, . . . , sn ∈ Sqf R such that
a = s1s2 . . . sn.

Proposition 5.4. If H is SR-monoid, then H satisfies SFD.

Proof. Let x ∈ H \ {0}. We want to show that x is a finite product of
square-free elements.

If x is a square-free element, then there is nothing to prove. So let’s
assume that x is not a square-free element.

Since x is not a square-free element, there is a y ∈ H such that x = y2,
where y ∈ H and y /∈ H∗. Since y /∈ H∗, then y ∈ RadH. By definition
of a radical element, there is z ∈ H such that y = z2 and z is a square-free
element. Then x = y2 = z4.

We can repeat this process for z until we get a square-free or unit. This
process must end after a finite number of steps. This means that x can be
expressed as a finite product of square-free elements.

Example 5.5. For any k ∈ N0 let

Hk = {(x, y) ∈ N2
0 : x + y = k}.

For any r ∈ N consider the following submonoid of N⩾k ∪ {0}:

H(r) =
⋃
k∈N0

Hkr.

If r = 1, then elements (0, 0), (0, 1), (1, 0) are radical and square-free.

If r = 2, then elements (0, 0), (1, 1) are radical and elements (0, 0), (0, 2),
(1, 1), (2, 0) are square-free.

If r ⩾ 3, then element (0, 0) is radical and elements (0, 0), (0, r), (1, r −
1), . . . , (r − 1, 1), (r, 0) are square-free.

Thus, for r = 1, the monoid H(r) satisfies the SR condition.

Also, for r ⩾ 2, the monoid H(r) is SFD but not RFD.
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Example 5.6. Let H be a non-group monoid in which all elements are squares,

e.g. Q⩾0,

〈
1

2n
| n ∈ N

〉
. A monoid H satisfies the SR condition, because

Sqf H = RadH = H∗.

Example 5.7. Consider the following monoid:

H = ⟨x1, x2, . . . , y1, y2, · · · | yi = xi+1yi+1, i = 1, 2, . . . ⟩ .

H is non-factorial GCD-monoid.

IrrH = PrimeH = {x1, x2, . . . }, so H is AP-monoid.

Sqf H = RadH = {x1, x2, . . . , y1, y2, . . . }, so H is SR-monoid.

There are many examples where AP-rings are SR-rings. But the question
arose as to when the implication would be the other way around. The answer
is in the statement below.

Proposition 5.8. Let R be a principal ideal domain. If R is SR-ring, then
R is AP -ring.

Proof. Let a ∈ R be an irreducible element of R. Then it is a square-free
element of R. From the SR assumption, a is a radical element in R. We will
show that every irreducible element that is radical is a prime element.

Suppose a is not prime, that is, there are b, c ∈ R such that a | bc, a ∤ b,
a ∤ c. Then aR is not a maximal ideal because it is contained in bR or cR
which are greater than aR. But since R is a principal ideal ring, the ideal
aR is maximal. Contradiction.

Corollary 5.9. The above theorem holds obviously in the unique factoriza-
tion domain.

Example 5.10. Consider H = Z[x]n. Then H satisfies the SR condition.
Indeed, suppose a = a0 + a1x + · · · + anx

n is a square-free element, and
suppose there are b ∈ Z and k > 1 such that ai = bk for some i. Then b2 | ai,
which means that a has a square divisor. A contradiction, therefore b and k
do not exist, i.e. a is a radical element.

H does not satisfy AP because 2x is irreducible element, but 2x | (2 +
x)(2 − x) = 4 − x2 does not imply that 2x divides 2 + x or 2 − x.

Let’s note about polynomial composites. Wiele w lasności można również
znaleźć w pracy [6].

Corollary 5.11. If T = K + XL[X] is atomic and IrrT ⊂ GprT , then T
is radical factorial.
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Note next Proposition.

Proposition 5.12. Let K and L be fields such that K ⊂ L and let T =
K+XL[X]. Then Gpr(T ) = (Gpr(L[X])∩T )∪{X2h;h ∈ Gpr(L[X]), h(0) /∈
{a2b; a ∈ L, b ∈ K}}.

Example 5.13. Let L be a field with char (L) = 2 such that L is not perfect,
let K be the prime subfield of L and T = K + XL[X]. Then Sqf T ̸=
Sqf(L[X]) ∩ T .

Proof. Since char (L) = 2 and L is not perfect, we have L ̸= {a2; a ∈ L}.
Since K = {0, 1}, this implies that L ̸= {a2b; a ∈ L, b ∈ K}. It is an
immediate consequence of Corollary 2.4 that Sqf T ̸= Sqf(L[X]) ∩ T .

In particular, if T = R+XC[X], then IrrT = {a+bX; a ∈ R, b ∈ C\{0}}
and Sqf T = {a

∏
b∈B(1+bX); a ∈ R\{0}, B ⊂ C, B is finite}∪{aX

∏
b∈B(1+

bX); a ∈ C \ {0}, B ⊂ C, B is finite}.
Using Corollary 2.4 we easily verify that if L is algebraically closed, then

K + XL[X] fulfills 1s/1r - 6s/6r (see [7]).
If L and K are finite fields and it is a proper extension, then K +XL[X]

is a non-factorial ACCP domain (see [1], [2]).

6 Square-free factorial monoids

This section is a supplement to the previous section, with more focus on
the SFD condition.

Proposition 6.1. Let H be a monoid that satisfies the condition AP . Then
H is atomic.

Proof. Suppose H is not atomic. Then there exists a ∈ H such that a is not
the product of a finite number of irreducible elements. Let a = q1q2 . . . qn
be the longest possible product of nonzero elements of H. Then none of
the factors qi can be irreducible, otherwise a would be the product of a finite
number of irreducible elements. So each of the factors qi must be the product
of two nonzero different from each other and from unit. Let q1 = r1s1 be
such a decomposition. Then a = r1s1q2 . . . qn is a longer product of non-zero
elements of H than a = q1q2 . . . qn, which contradicts the maximal product
length assumption. So H must be atomic.

Proposition 6.2. Let H be a pre-Schreier monoid. Then H is ACCP-
monoid.
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Proof. Assume H is a pre-Schreier monoid. Suppose H is not a monoid that
satisfies ACCP, i.e. there is an infinite increasing sequence of ideals

(a1) ⊂ (a2) ⊂ . . .

Let x ∈ H \ {0}. Then x | an for each n ∈ N because (an) ⊂ (x). So there
are bn ∈ H such that an = xbn. Since x satisfies a pre-Schreier condition,
so is bn. Note that b1 | b2 | . . . , which means that there is cn ∈ H such
that bn = cnbn+1. So an = xcnbn+1. Since H is pre-Schreier, let x = x1x2,
cn = cn1cn2, bn+1 = bn+1,1bn+1,2 such that x1 | cn1, x2 | bn+1.1, cn2 | bn+1.2 and
bn = cn1bn+1.2 for each n ∈ N. In particular, we have x2 | b2 | b4 | . . . which
means that there is d ∈ H such that x2 = db2. Inserting into a2 = xb2 we
get a2 = db2x1x2 = db22x1. Because a2 ̸= 0, a2 /∈ H∗, is d ∈ H∗. Thus, x2 is
the product of two invertible elements, which contradicts that x satisfies the
pre-Schreier condition.

Proposition 6.3. If H is an atomic monoid, then H is SFD.

Proof. Since any non-invertible non-zero element of H is a finite product of
irreducible elements, it is a finite product of square-free elements.

Example 6.4. Consider the monoid Z4. It is the monoid SFD, but 2 cannot
be written as a product of two numbers other than zero and unit, so it is not
atomic.

Recall that the monoid/ring R satisfies the RFD condition if for any
nonzero element a ∈ R there are r1, r2, . . . , rn ∈ RadR such that a =
r1r2 . . . rn.

Proposition 6.5. If H is a monoid that satisfies the RFD, then it satisfies
the SFD.

Proof. Since any non-invertible non-zero element of H is a finite product of
radical elements, it is a finite product of square-free elements.

Proposition 6.6. If H is an SR monoid and is an SFD monoid, then H is
an RFD monoid.

Proof. In H, every non-zero non-invertible element is a finite product of
square-free elements. By the SR condition, square-free elements are radical.
So H satisfies the RFD condition.

Proposition 6.7. If H is a monoid that satisfies the SR condition and is
an atomic monoid, then H satisfies the RFD condition.

Proof. In H, every non-zero non-invertible element is a finite product of
irreducible elements that are square-free. By the SR condition, square-free
elements are radical. So H satisfies the RFD condition.
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