Data protection and privacy in cost and
production functions

Lukasz Matysiak
Kazimierz Wielki University
Bydgoszcz, Poland
lukmat@ukw.edu.pl

July 3, 2023

Abstract

In this paper, we consider an ongoing open problem to any enter-
prise, which is how to protect data and privacy in cost and production
functions. We present simple and effective methods of data encryption
and cost and production functions.

1 Introduction

There is a common problem of data protection and privacy issue, such
as costs or factors of production, in enterprises. Of course, the data can be
calculated and encrypted, but if a stranger learns the encrypted data and
the given cost and production functions, it is only a matter of the adversary
recreating the real data. The aim of this article is to secure the data, but
also to secure the cost and production function.

The production function and the cost function are closely related, because
the cost of producing a given quantity of a product depends on inputs of
factors of production and their prices. The cost function T'C' shows what is
the minimum cost of producing a given quantity of product at given input
prices. The cost function can be expressed as the sum of fixed costs F' and
variable costs C'V, which depend on the amount of production Q:

Keywords: cost function, data, encryption, privacy, production function
2010 Mathematics Subject Classification: Primary 91B24, 91B44 Secondary 94A60.

TC = F+CV(Q).

The cost function can also be determined on the basis of the production
function if we know the prices of the factors of production: labor w and
capital r. Then the cost function has the following form:

TC =wL+ 1K,

where L and K are the quantities of labor and capital needed to pro-
duce @ units of output. To find these quantities, one has to solve the cost
minimization problem at a given quantity of production:

min(wl + rK)

with the condition @ = f(L, K), where f(L,K) is the production func-
tion.

It is worth noting that if the fixed cost will be of the form

TC(z) = apz™ + ap 12"t + -+ ayz + ao,

then the average cost AC' is of the form

TC
AC(X) = @) _ 0" a7 a2
Y €T

We can calculate the marginal cost MC' as follows:
MCO(x) = TC'(z) = na,z™ " + - -+ + 2a97 + a;.

For simplicity, we will denote the cost and production functions as a
simple mathematical function f dependent on certain variables.

Thus, the cost function will be denoted by f(z) = ax + b, where b is a
fixed cost, a is a variable cost depending of the factor x. But nowadays such
a function may not be enough, because we can change the prices in certain
time periods 0, t1, ta, ..., t,. Therefore, in the section [2 we will consider
the general cost function:

f(z) =aop+ Z a; max(0, min(t; — t;_1,x — t;_1)),

i=1
where the general cost function is a linear piecewise function.

In the section [3] we present the three most common types of production
functions and how to encrypt them. However, if a given company used other

production functions, it can be inferred from this section analogously as to
encrypt a different type of function. We consider the traditional type of
production function:

Q(z1,...,xn) = @121 + ... ApTyp.

The Cobb-Douglas production function is common:

Q(z1, ..., x,) = apr]*xy® ... 20",

And also the previously mentioned minimum function:

Q(z1,...,x,) = min(a121, . . ., a,x,).

2 Cost functions

In this section, we will discuss cost function data encryption. Encryption
of cost function data is a process of transforming data containing information
on costs incurred by the company in the process of production or provision
of services using a secret key, so that they are incomprehensible to unau-
thorized persons. Encryption of cost function data is intended to ensure the
confidentiality, integrity and availability of this data, and to prevent manipu-
lation and abuse by competitors, customers, suppliers or others. Encrypting
cost function data can also improve business efficiency and competitiveness
by optimizing decision-making processes and resource allocation. In this sec-
tion, we will present a certain encryption method for various cases, which is
easy to use, and may give unauthorized people the illusion of the truth of
the data, because the following method does not change the form of the cost
function.

Theorem 2.1. Let f(x) = ax+b be a cost function, a # 0. Let g(z) = cx+d
be a linear and encryption function and let s be a square-free number relatively
prime of a, ¢, with a,b < s. Then (go f) (mod s) is an encrypted function
of cost and linear type.

Proof. Let f(x) = ax + b, g(z) = cx + d and s be defined as above. Then
(go f)(x)=g(f(x)) =glax +b) = (ca)x + (cb+d) (mod s).

As we can see, (go f) is a linear function and looks like a cost function with
coded coefficients.

To get the function f back, we need to find the function ¢g=! (mod s). In
our situation it is

g Hz) (mods)=c'r—c'd (mod s).

Calculate:

g g(f(@) =g (car+cb+d)=c cax +cb+d) —c'd=
=ar+b= f(x) (mod s).

The calculations show that the function f can be encrypted using the
function g. The new function is in the form of a cost function.

To show that the encryption is unambiguous, let’s look at what f~! and
g~ ' are. Of course, f is invertible if and only if GCD(a,s) = 1 and g is
invertible if and only if GCD(¢, s) = 1, which follows from assumptions. Let
y = g(f(z)). Then f(z) = g *(y), and next x = f~(¢g *(y)). That is, for
every y there is exactly one x such that g(f(z)) = y and can be reconstructed
by applying the inverses of ¢ and f. n

In a similar way, we can encrypt when we convert the square-free number
s to the square-free polynomial s(z).

Proposition 2.2. Let f(x) = ax+b be a linear cost function. Let g(x) = cx+
d be the encryption function and let s(x) be a square-free function relatively
prime of f(x) i g(x). Then g(f(z)) (mod s(x)) is an encrypted function of
cost and linear type.

Proof. The proof is analogous to Theorem O

Of course, in general, the above linear form cost function does not occur
in enterprises. The cost includes many things and many time periods. In the
proofs, calculations take into account the operation modulo s, where s is a
square-free number.

Theorem 2.3. Let f(x) = b+ ay min(ty, x) + aamaz(0,z — t1) be a linear
piecewise cost function. Let g(x) = ¢ + dmin(sy, x) + emax(0,z — s1) be an
encryption function and let s be a square-free number relatively prime of ay,
as, d, e. Then (go f) (mod s) is an encrypted cost function and a linear
piecewise function.

Proof. Let f(x), g(x) and s be defined as above. Let’s encrypt the function
f with g modulo s:

(g0 f)(x) =g(f(x)) = ¢+ dmin(s1, b+ a1 min(t1,) + az max(0,z — 1))+
+ emax(0,b + a; min(ty, x) + ap max(0,z — t1) — s1).

As we can see the function g o f is a linear piecewise function and looks
like a cost function with encrypted coefficients.

To get the function f back, we need to find the function g=' (mod s). In
our situation it is

T —c
-1 . d
g (z) = e d
51—1—% for ds; <x—c

for z—c<ds;

When we calculate g7 o (g o f)(z) = g7 (g(f())) (mod s) we get the
original function f(x).

The proof of uniqueness is analogous to the Theorem [2.1] O

Theorem 2.4. Let f(z) = ap+) a; max(0, min(t;—t;,_1,x—1t;_1)) be a lineat
i=1

piecewise cost function. Let g(x) = bo+ Y b; max(0, min(w; —w;_1, x—w;_1)),
i=1

be an encryption function and let s be a square-number, relatively prime of

a; and b; fori =1,2,...,n, j =1,2,...,m. Then (go f) (mod s) is an

encrypted cos function and linear piecewise function.

Proof. Let f(z), g(x) and s be defined as above. Let’s encrypt f with g
modulo s:

(go f)(x) =g(f(x)) = by + Z b; max (0, min(w; — w;_1, f(x) — w;_1))

=1

As we can see the function g o f is a linear piecewise function and looks
like a cost function with encrypted coefficients.

To get the function f back, we need to find the function ¢g=' (mod s). In

our situation it is:

(x — by
b1

dla x—by < bisy

x—bo —b1$1

b2 ¥ 5 dla b181 L<x— bo < b181 + bQ(SQ — 81)

Xr — bQ — b181 — b2(32 — 81)
g Y(z) = T dla bisi 4+ ba(sy —s1) <z —by <

< b1$1 + b2<82 — 51) + b3(83 — 82)

n—1
xr — b() — b181 — Z bz(Sz — Si_1>
=2

\ bn + Sp—1

n—1
dla b181 + Z bz(sz - 82'_1) L<x— bo
1=2

When we calculate g~ (g(f(x))) (mod s(z)) we get the original function
/().

The calculations show that the f can be encrypted using the function g.
The new function is in the form of a cost function. Encryption is specified
correctly.

The proof of uniqueness is analogous to Theorem [2.1] O

3 Production functions

Encryption of the production function consists in securing information
on how the company uses inputs of production factors: labor and capital,
to achieve a certain production volume. Encryption can be applied both to
the general production function and to the production function of individual
products or services. Encryption is designed to protect data from unautho-
rized access, theft, manipulation or disclosure. In this section, we will cover
a similar encryption method to the [2| section. The proofs include operations
modulo s, where s is a square-free number.

Theorem 3.1. Let Q(xy,...,x,) = a1x1 + ... a,x, be the production func-
tion. Let s be a square-free number and let g(z) = bz + ...b,x be an
encryption function such that GCD(by + -+ + by, s) = 1. Then go Q is an
encrypted production function of the same type as Q.

Proof. Let Q(x1,...,2,), g(x), s be defined as above. Then

m

(QOQ)(Z’L . 7%) = Q(Q(ﬁl, . 7%)) =T Z arbi+- - -z, Z anb; (mod s).

i=1 i=1
As we can see, composition is a function of the same type as) and looks
like a production function with coded coefficients.

To get the @ function back, we need to find the ¢! function. In our
situation it is:
g x)= b1+ - +by) 'z (mod s).

Let’s check:

gil(g(Q(xh s 7xn))) = gil<x1 Zalbi -ty Zanbl) =
=1 =1

= (b + -+ by) (@Y arbi+ T Y anb) = Q. 3)
=1 =1

The calculations show that the function () can be encrypted using the
function g. The new function is in the form of the production function.
Encryption is specified correctly.

The uniqueness proof is analogous to the Theorem [2.1] O

The next production function is a Cobb-Douglas function.

Theorem 3.2. Let Q(xy,...,x,) = apx'x5? ... x% be the production func-

tion. Let g(x) = boatrab? .. 2P = boa®1**0m be the encryption function

and let s be a square-free number relatively prime of ag and by. Then g o @)
1s an encrypted production function of the same type as Q).

Proof. Let Q(x), g(x) and s be defined as above. Then
go Q = g(Q(xl, ce ,l‘n>) = (boa81+"'+b”1)(;(;§bl . ngn)bl-f—"'-‘rbm‘

As we can see, composition is a function of the same type as) and looks
like a production function with coded coefficients.

To get the function @ back, we need to find the function ¢g~!. In our
situation it is:
1

g—l(x) = exp log (bz) bl “+ -4 bm
0

Let’s check:

g1 (9(Q(2))) = g~ (boag) (2" g)T = Q(a)

The calculations show that the function () can be encrypted using the
function ¢g. The new function is in the form of the production function.
Encryption is specified correctly. The uniqueness of the encryption is proved
in the same way as in Theorem [2.1] O]

The next production function is also considered in enterprises.

Theorem 3.3. Let Q(xq,...,x,) = min(aix1,...,a,x,) be the production
function. Let g(z) = min(byz, ..., b,x) be the encryption function. Then
go @ is an encrypted production function of the same type as Q).

Proof. Let Q(x1,...,x,) and g(x) be defined as above. Then
9(Q(xy,...,z,)) = min(bia;x;, . .., bpa;z;),

where a;x; is the actual value of the function (). As we can see, composition
is a function of the same type as) and looks like a production function with
coded coefficients.

To get the function @ back, we need to find the function ¢g~!. In our
situation it is:

@)=
for some k € {1,...,m} such that x < min(by, ..., b,).
Let’s check:
g H9(Q(2))) = g (min(bya;x;, . . ., bpaiz;)) = mm(blaixi; -+ bmiT3) =
_ bragz; '
== = a;x;

The calculations show that the function () can be encrypted using the
function ¢g. The new function is in the form of the production function.
Encryption is specified correctly. The uniqueness of the encryption is proved
in the same way as in Theorem [2.1] O]

4 Some additional considerations

In all encryptions, we can use a prime number instead of a square-free
number, but this increases the risk of reading our data. Often, cracking a
cipher is based on factoring the key into prime factors, and such factoring
is always unambiguous. However, the described square-free factorizations in
[] and [5] are usually not unambiguous, which increases the security of our
data.

In the paper [3] we have an abstract description of converting a number-
theoretic cipher into an algebraic one by replacing the coefficients with ideals
generated by a given element. The great advantage is artificial getting rid of
the finiteness of the alphabet in favor of an infinite set of alphabets. Unfor-
tunately, the disadvantage is the very high computational complexity.

Traditional encryption uses the Z integer ring, which is a special case of
the Dedekind ring.

Lemma 4.1. For an integral domain R that is not a field, all of the following
conditions are equivalent:

1. Every nonzero proper ideal factors into primes.

2. R s Noetherian, and the localization at each maximal ideal 1s a discrete
valuation ring.

3. Every nonzero fractional ideal of R is invertible.

4. R is an integrally closed, Noetherian domain with Krull dimension one
(that is, every nonzero prime ideal is mazximal).

5. For any two ideals I and J in R, I is contained in J if and only if J
divides I as ideals. That s, there exists an ideal H such that I = HJ.
A commutative ring (not necessarily a domain) with unity satisfying
this condition is called a containment-division ring.

Thus a Dedekind domain is a domain that either is a field, or satisfies
any one, and hence all five, of 1. through 5. Which of these conditions one
takes as the definition is therefore merely a matter of taste. In practice, it
is often easiest to verify 4. In [2], two cryptosystems are considered that use
the fractional ideal property, where in the first system the ideal is a key, and
in the second a second alphabet.

The article [I] presents a method using Galois groups. One could think
of applying such encryption to our cost and production functions.

5

Declarations

This paper was not funded.

Author declares that there is no conflict of interest.

Data available within the article or its supplementary materials.

References

1]

Chrzaniuk, M., Duda, M., Hanc, M., Kowalski, S., Matysiak, L., Skot-
nicka, Z., Waldoch, M., Certain cryptographic systems based on an al-
gebraic structure, East Asian Journal on Applied Mathematics, Vol. 13,
No. 1, pp. 177-193.

Jankowska, M., Matysiak, L., A structure of Dedekind in the cryptosys-
tem, SCIREA Journal of Mathematics. Vol. 7, No. 1, 2022, 1-8, (2022).

Matysiak, L., Generalized RSA cipher and Diffie-Hellman protocol, Jour-
nal of applied mathematics € informatics, 39 (1-2), 93-103, (2021).

Matysiak, L., On square-free and radical fac-
torizations and existence of some divisors,
https://lukmat.ukw.edu.pl/files/On-square-free-and-radical-factorizations
-and-existence-of-some-divisors.pdf, 2021.

Matysiak, L., On square-free and radical factorizations and relationships
with the Jacobian conjecture, accepted in The Asian Journal of Mathe-
matics, (2022).

10

	Introduction
	Cost functions
	Production functions
	Some additional considerations
	Declarations

