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Abstract
We discuss various square-free factorizations in monoids in the context of: atomicity,
ascending chain condition for principal ideals, decomposition, and a greatest common
divisor property.Moreover,we obtain a full characterization of submonoids of factorial
monoids inwhich all square-free elements of a submonoid are square-free in amonoid.
We also present a factorial property implying that all atoms of a submonoid are square-
free in a monoid.

Keywords Monoid · Factorization · Square-free element · Radical element · Atom ·
Jacobian conjecture

1 Introduction

Throughout this paper by a monoid we mean a commutative cancellative monoid. We
adopt the notation from [11].

Let H be amonoid.We denote by H× the group of all invertible elements of H . Two
elements a, b ∈ H are called relatively prime if they have no common non-invertible
divisors, what we denote by a rprb. The set of all atoms in H will be denoted byA(H).
Recall that an element a ∈ H is called square-free if it cannot be presented in the form
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a = b2c, where b, c ∈ H and b /∈ H×. The set of all square-free elements in H we
will denote by S(H).

The main motivation of this paper is connected with the following two properties
concerning a submonoid M ⊂ H . The first one is that all atoms of M are square-free
in H :

A(M) ⊂ S(H). (1.1)

The second one is that all square-free elements of M are square-free in H :

S(M) ⊂ S(H). (1.2)

These properties are related to the famous Jacobian conjecture (for details see Sect. 2).
If H is a factorial monoid and a submonoid M ⊂ H satisfies M× = H× and

q(M) ∩ H = M , then condition (1.2) can be expressed in a factorial way (see [14],
Theorem 3.4—formulated in terms of rings, but in fact valid for monoids):

for every a ∈ H , b ∈ S(H), if a2b ∈ M, then a, b ∈ M . (1.3)

Recall also (see [14], Theorem 3.6) that under these assumptions a submonoid M
satisfying (1.2) is root closed in H . Recently Angermüller showed in [4], Theorem
3, that under the same assumptions a submonoid M satisfying (1.1) is root closed in
H . A submonoid M ⊂ H is called root closed in H if, for every a ∈ H and n ≥ 1,
an ∈ M implies a ∈ M .

Recall two questions concerning the conditions (1.1) and (1.2) in the case of a UFD,
stated in [13]. We have asked if they are equivalent under some natural assumptions
(like M× = H×), and if not, can the condition (1.1) be expressed in a form of
factoriality, similarly to (1.3)?

In Sect. 4 we present a factorial property implying (1.1), weaker than (1.3), namely:

for every a ∈ H , b ∈ S(H), if a2b ∈ M, then a, ab ∈ M . (1.4)

In Theorem 4.3 we show that property (1.4) has natural equivalent forms with respect
to various square-free factorizations.

In Theorem 5.1 we obtain full description of submonoids of a factorial monoid,
satisfying (1.2), as factorial submonoids generated (up to irreducibles) by any set
of pairwise relatively prime square-free non-units. We also obtain the answer to a
question, when (1.1) and (1.2) are equivalent, expressing (1.2) as a conjunction of (1.1)
and the property that any two non-associated atoms of M are relatively prime in H .
Moreover, we refer in Theorem 5.1 to various square-free factorizations, in particular
equivalence between (1.2) and (1.3) holds without the assumption q(M) ∩ H = M .

Section 6 is devoted to properties of radical elements. Reinhart in [21] introduced
the notions of radical element and radical factoriality of a monoid. An element a ∈ H
is called radical if its principal ideal aH is a radical ideal. Amonoid H is called radical
factorial if every element is a product of radical elements. As we already observed in
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[15], Lemma 3.2 (b), every radical element is square-free. So we have the following
diagram of relations on elements of a monoid:

prime ⇒ atom
⇓ ⇓

radical ⇒ square-free
(1.5)

A radical element is an analog of a square-free one in the same way as a prime element
is an analog of an atom. Moreover, a radical element is a generalization of a prime in
the same way as a square-free element is a generalization of an atom.

How these analogies and generalizations work, we show in Sect. 6. In Proposi-
tions 6.5– 6.7 we study the uniqueness of factorizations. In Proposition 6.4 we prove
that in a decomposition monoid all square-free elements are radical. Recall that a
monoid H is called a decomposition monoid if every element a ∈ H is primal, that
is, for every b, c ∈ H such that a | bc there exist a1, a2 ∈ H such that a = a1a2,
a1 | b and a2 | c. A domain R is pre-Schreier if the multiplicative monoid R \ {0}
is a decomposition monoid. The notion of a pre-Schreier domain was introduced by
Zafrullah in [24], see also [6] and the references given there.

In Sects. 2 and 7 we discuss square-free factorizations in monoids in the context
of the following properties: atomicity, ACCP, decomposition, GCD. We collect all
relationships in Proposition 3.4. This is a generalization and extension of Proposition
1 from [16]. In Sect. 7 we consider possible classifications of monoids with respect to
square-free factorizations and we state questions about existence of monoids. Some
examples are presented in Sect. 8.

We refer to the following diagram of relations of monoids:

BF ⇒ ACCP ⇒ atomic
⇒

factorial
⇒

GCD ⇒ decomposition ⇒ atoms are primes

(1.6)

Remember that

atomic ∧ atoms are primes ⇒ factorial (1.7)

Finally, in Sect. 9 we concern a natural question about the possible number of
square-free elements in a monoid.

2 Connections with the Jacobian conjecture

The Jacobian conjecture, stated by Keller [17] in 1939 is one of the most important
open problems stimulating modern mathematical research (see [22]), with long lists
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of false proofs and equivalent formulations. For more information we refer the reader
to van den Essen’s book [23].
Jacobian conjecture Let k be a field of characteristic 0. For every polynomials
f1, . . . , fn ∈ k[x1, . . . , xn] with n ≥ 2, if

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fn
∂x1

· · · ∂ fn
∂xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∈ k \ {0}, (2.1)

then k[ f1, . . . , fn] = k[x1, . . . , xn].
Now, we will describe some topics of an approach to the conjecture in terms of

irreducibility and square-freeness. For more details we refer the reader to our survey
article [13].

Under the assumption that f1, . . . , fn are algebraically independent over k, the
Jacobian condition (2.1) is equivalent to any of the following ones [8,12,14]:

every atom of k[ f1, . . . , fn] is square-free in k[x1, . . . , xn], (2.2)

every square-free element of k[ f1, . . . , fn] is square-free in k[x1, . . . , xn].
(2.3)

Under the same assumption, the assertion of the conjecture: k[ f1, . . . , fn] =
k[x1, . . . , xn] is equivalent to the following one [1,5,12]:

every atom of k[ f1, . . . , fn] is an atom of k[x1, . . . , xn]. (2.4)

Hence, in particular, the existence of a non-trivial example for (2.2), where by “non-
trivial” we mean “not satisfying (2.4)”, is equivalent to the negation of the Jacobian
conjecture.

Recall a generalization of the Jacobian conjecture formulated in [14].
Conjecture Let k be a field of characteristic 0. For every polynomials f1, . . . , fr ∈
k[x1, . . . , xn] with n ≥ 2 and r ∈ {2, . . . , n}, if

gcd

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x j1

· · · ∂ f1
∂x jr

...
...

∂ fr
∂x j1

· · · ∂ fr
∂x jr

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, 1 ≤ j1 < . . . < jr ≤ n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ k \ {0}, (2.5)

then k[ f1, . . . , fr ] is algebraically closed in k[x1, . . . , xn].
By Nowicki’s characterization ([19], Theorem 5.4, [18], Theorem 4.1.4, [7], 1.4)

the assertion above is equivalent to: “R is a ring of constants for some k-derivation of
k[x1, . . . , xn]”.
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Under the assumption that f1, . . . , fr are algebraically independent over k, the
generalized Jacobian condition (2.5) is equivalent to any of the following ones ([14]):

every atom of k[ f1, . . . , fr ] is square-free in k[x1, . . . , xn], (2.6)

every square-free element of k[ f1, . . . , fr ] is square-free in k[x1, . . . , xn].
(2.7)

3 Square-free factorizations in monoids

The aim of this section is to recall and extend some observations from [16]. The
statements in that paper were formulated for rings, but the arguments are valid for
monoids, since we were working only with the multiplicative structure of rings. In
particular, Lemma 1 and Lemma 2 e) of [16] take the following form.

Lemma 3.1 Let H be a monoid. If a ∈ S(H) and a = b1b2 . . . bn, then b1, b2, . . .,
bn ∈ S(H) and bi rpr b j for i 
= j .

Lemma 3.2 Let H be a decomposition monoid. If a1, . . . , an ∈ S(H) and ai rpr a j for
all i 
= j , then a1 . . . an ∈ S(H).

As an immediate consequence we obtain.

Corollary 3.3 If H is a decomposition monoid and a1, . . . , an ∈ A(H), ai � a j for
i 
= j , then a1 . . . an ∈ S(H).

In [16], Proposition 1, we considered three types of square-free factorizations—(ii),
(iii), (iv) in Proposition 3.4 below. In [16] we did not consider condition denoted (i)
below as a separate one, as well as atomicity implying it. Moreover, we considered in
[16], Proposition 1, only one type of square-free extraction—(vi) in Proposition 3.4
below. Here we add a second type of square-free extraction—(v) as easily following
from (ii) for an arbitrary monoid. Finally, implications (vi) ⇒ (ii) and (vi) ⇒ (iv) in
[16], Proposition 1 (b) were formulated for GCD-domains, but the proofs were based
only on [16], Lemma 2 e). This is why implications (iii) ⇒ (ii) and (iii) ⇒ (iv) below
hold for arbitrary decomposition monoids. In part (c) of Proposition 3.4 we take into
account the following remark of the reviewer.

Reviewer’s remark Since every square-free element of a GCD-monoid is radical, we
have every GCD-monoid that satisfies property (i) is radical factorial. Therefore, [20],
Theorem 3.10 and Corollary 4.5, imply that every GCD-monoid that satisfies property
(i), satisfies property (ii), since every principal ideal is a product of finitely many
pairwise comparable radical principal ideals.

Proposition 3.4 Let H be a monoid. Consider the following conditions:
(i) for every a ∈ H there exist n ≥ 1 and s1, s2, . . . , sn ∈ S(H) such that a =
s1s2 . . . sn,
(ii) for every a ∈ H there exist n ≥ 1 and s1, s2, . . . , sn ∈ S(H) such that si | si+1
for i = 1, . . . , n − 1, and a = s1s2 . . . sn,
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(iii) for every a ∈ H there exist n ≥ 1 and s1, s2, . . . , sn ∈ S(H) such that si rpr s j
for i 
= j , and a = s1s22s

3
3 . . . snn ,

(iv) for every a ∈ H there exist n ≥ 0 and s0, s1, . . . , sn ∈ S(H) such that a =
s0s21s

22
2 . . . s2

n

n ,
(v) for every a ∈ H there exist b ∈ H and c ∈ S(H) such that a = bc and a | cn for
some n ≥ 1,
(vi) for every a ∈ H there exist b ∈ H and c ∈ S(H) such that a = b2c.
(a) The following implications hold:

(i) ⇐ atm ⇐ ACCP

⇑ ⇐ ⇒
(ii) ⇒ (iii) (iv)
⇓ ⇓
(v) (vi)

(b) If H is a decomposition monoid, then

(ii) ⇔ (iii) ⇒ (iv).

(c) If H is a GCD-monoid, then

(i) ⇔ (ii) ⇔ (iii) ⇔ (iv).

Note that, according to (v), under the assumption a = bc the condition “a | cn for
some n ≥ 1” is equivalent to “b | cn for some n ≥ 1”.

Recall that every radical element is square-free ([15], Lemma 3.2 (b), so radical
factorial monoids studied by Reinhart in [21] satisfy condition (i).

Remark 3.5 The statement that there are (in general) no other implications than the
ones stated above is equivalent to the existence of the following counter-examples.

1. Non-factorial GCD-monoids satisfying: (v) ∧ ¬(vi), (vi) ∧ ¬(v).
2. Decomposition non-GCD monoids satisfying: (i) ∧ ¬(vi), (iv) ∧ ¬(v).
3. Non-decomposition monoids satisfying: (ii) ∧ ¬(vi), (iii) ∧ ¬(v).
4. Non-factorial ACCP-monoids satisfying: ¬(iii), ¬(v).
5. An atomic non-ACCP monoid satisfying ¬(vi).
6. A non-atomic monoid satisfying (ii).

4 Sufficient conditions forA(M) ⊂ S(H)

In this sectionwe study a factorial property (1.4) implying that all atomsof a submonoid
are square-free in a monoid. We show that this property is, in general, not a necessary
one. However, it is interesting by itself since it has natural equivalent forms with
respect to several square-free factorizations, what we obtain in Theorem 4.3.
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Proposition 4.1 Let H be a monoid satisfying condition (vi) of Proposition 3.4. Let
M be a submonoid of H such that for every a ∈ H, b ∈ S(H),

a2b ∈ M ⇒ a, ab ∈ M .

Then A(M) ⊂ S(H).

Proof Suppose that there exists some c ∈ A(M) such that c /∈ S(H). Then c = a2b
for some a ∈ H , b ∈ S(H). Since a2b ∈ M , then a, ab ∈ M . Note that a /∈ H×,
because c /∈ S(H), so a, ab /∈ M×, a contradiction. ��

The converse implication is not valid:

Example 4.2 Consider a monoid H = N
3≥0 and its submonoid M = 〈(1, 1, 0),

(1, 0, 1)〉. Then A(M) = {(1, 1, 0), (1, 0, 1)}, so A(M) ⊂ S(H), but for a =
(1, 0, 0) ∈ H , b = (0, 1, 1) ∈ S(H) we have 2a + b ∈ M and a, a + b /∈ M .

Observe that in the above example the monoid M satisfies q(M) ∩ H = M , and
under this condition properties (1.3) and (1.4) are equivalent.

The most difficult part of Theorem’s 4.3 proof is the connection between (i) ⇔ (ii)
and (iii) ⇔ (iv) ⇔ (v), i.e. the equivalence of (ii) and (iii).

Theorem 4.3 Let H be a factorial monoid. Let M ⊂ H be a submonoid such that
M× = H×. The following conditions are equivalent:
(i) for every a ∈ H and b ∈ S(H),

a2b ∈ M ⇒ a, ab ∈ M,

(ii) for every n ≥ 0 and s0, s1, . . . , sn ∈ S(H),

s0s
2
1s

22
2 . . . s2

n

n ∈M ⇒ si si+1s
2
i+2s

22
i+3 . . . s2

n−i−1

n ∈M, i = 0, . . . , n − 1, and sn ∈M,

(iii) for every n ≥ 1 and s1, s2, . . . , sn ∈ S(H) such that si rprH s j for i 
= j ,

s1s
2
2s

3
3 . . . snn ∈ M ⇒ sn, sn−1sn, sn−2sn−1sn, . . . , s1s2 . . . sn ∈ M,

(iv) for every n ≥ 1 and s1, s2, . . . , sn ∈ S(H) such that si | si+1 for i = 1, . . . , n−1,

s1s2 . . . sn ∈ M ⇒ s1, s2, . . . , sn ∈ M,

(v) for every a ∈ H and b ∈ S(H) such that a | bn for some n ≥ 1,

ab ∈ M ⇒ a, b ∈ M .

Proof (i) ⇒ (ii)
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Assume (i). Consider elements s0, . . . , sn ∈ S(H) such that s0s21s
22
2 . . . s2

n

n ∈ M .

Since
(

s1s22s
22
3 . . . s2

n−1

n

)2
s0 ∈ M , from (i) we obtain

s1s
2
2s

22
3 . . . s2

n−1

n ,
(

s1s
2
2s

22
3 . . . s2

n−1

n

)

s0 ∈ M .

Then, since
(

s2s23s
22
4 . . . s2

n−2

n

)2
s1 ∈ M , from (i) we obtain

s2s
2
3s

22
4 . . . s2

n−2

n ,
(

s2s
2
3s

22
4 . . . s2

n−2

n

)

s1 ∈ M .

Continuing, finally we receive:

(

s1s
2
2s

22
3 . . . s2

n−1

n

)

s0,
(

s2s
2
3s

22
4 . . . s2

n−2

n

)

s1, . . . , sn−1s
2
nsn−2, snsn−1, sn ∈ M .

(ii) ⇒ (i)
Assume (ii). Consider a ∈ H , b ∈ S(H) such that a2b ∈ M . We can express a in the
form a = s1s22s

22
3 . . . s2

n−1

n , where si ∈ S(H) for i = 1, . . . , n. Put s0 = b. Thus we
receive:

s0s
2
1s

22
2 . . . s2

n

n = a2b ∈ M .

Using the assumption we obtain:

s0s1s
2
2s

22
3 . . . s2

n−1

n , s1s2s
2
3s

22
4 . . . s2

n−2

n , . . . , sn−2sn−1s
2
n , sn−1sn, sn ∈ M .

We see that ab = s0s1s22s
22
3 . . . s2

n−1

n ∈ M . Moreover:

a = sn(sn−1sn)
(

sn−2sn−1s
2
n

)(

sn−3sn−2s
2
n−1s

22
n

)

. . .
(

s1s2s
2
3s

22
4 . . . s2

n−2

n

) ∈ M .

(ii) ⇒ (iii)
Assume (ii). We write �x� and �x� for respectively the ceiling and the floor of a real
number x .

Step I. If s1s22s
3
3 . . . snn ∈ M , where s1, . . . , sn ∈ S(H), si rprH s j for i 
= j , then

s1s2s23s
2
4 . . . s

� n
2 �

n , s2s3s24s
2
5 . . . s

� n
2 �

n ∈ M .

Let a = s1s22s
3
3 . . . snn ∈ M , where s1, . . . , sn ∈ S(H), si rprH s j for i 
= j . Then the

element a can be presented in the form a = t0t21 t
22
2 . . . t2

r

r , where ti = s
c(1)
i

1 . . . s
c(n)
i

n ∈
S(H), i = 0, . . . , r and k = ∑r

i=0 c
(k)
i 2i with c(k)

i ∈ {0, 1}, k = 1, . . . , n (see the

proof of (vi)⇒(ii) in [16], Proposition 1). From (ii) we get ti ti+1t2i+2t
22
i+3 . . . t2

r−i−1

r ∈
M , i = 0, . . . , r − 1 and tr ∈ M . In particular, t0t1t22 . . . t2

r−1

r ∈ M . Moreover:

t1t
2
2 t

22
3 . . . t2

r−1

r =
(
r−1
∏

i=1

ti ti+1t
2
i+2t

22
i+3 . . . t2

r−i−1

r

)

tr ∈ M .
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By the definition of c( j)
i , we have

s1s2s
2
3s

2
4 . . . s

� n
2 �

n = t0t1t
2
2 . . . t2

r−1

r ∈ M,

s2s3s
2
4s

2
5 . . . s

� n
2 �

n = t1t
2
2 t

22
3 . . . t2

r−1

r ∈ M .

Step II. If s1s22s
3
3 . . . snn ∈ M , where s1, . . . , sn ∈ S(H), si rprH s j for i 
= j , then

s1s2s3 . . . sn, s2s23s
3
4 . . . sn−1

n ∈ M .

Assume that s1s22s
3
3 . . . snn ∈ M , where s1, . . . , sn ∈ S(H), si rprH s j for i 
= j . We

prove by induction on l that

s

⌈
1
2l

⌉

1 s

⌈
2
2l

⌉

2 . . . s

⌈
n−1
2l

⌉

n−1 s

⌈
n
2l

⌉

n , s
1−

⌈
1
2l

⌉

1 s
2−

⌈
2
2l

⌉

2 . . . s
n−1−

⌈
n−1
2l

⌉

n−1 s
n−

⌈
n
2l

⌉

n ∈ M .

Put q = � n
2l

�. Then (q − 1)2l < n ≤ q2l . Put s′
i = s(i−1)2l+1s(i−1)2l+2 . . . si2l for

i = 1, . . . , q−1 and s′
q = s(q−1)2l+1s(q−1)2l+2 . . . sn . Note that s′

1, s
′
2, . . . , s

′
q ∈ S(H)

and s′
i rprH s′

j for i 
= j , because s1, . . . , sn ∈ S(H), si rprH s j for i 
= j . We have

s
� 1
2l

�
1 s

� 2
2l

�
2 . . . s

� n−1
2l

�
n−1 s

� n
2l

�
n = s′

1(s
′
2)

2 . . . (s′
q)

q . If s
� 1
2l

�
1 s

� 2
2l

�
2 . . . s

� n−1
2l

�
n−1 s

� n
2l

�
n ∈ M , then

by step I we obtain that

s

⌈
1

2l+1

⌉

1 s

⌈
2

2l+1

⌉

2 . . . s

⌈
n−1
2l+1

⌉

n−1 s

⌈
n

2l+1

⌉

n = s′
1s

′
2(s

′
3)

2(s′
4)

2 . . . (s′
q)

� q
2 � ∈ M

and

s

⌈
1
2l

⌉

−
⌈

1
2l+1

⌉

1 s

⌈
2
2l

⌉

−
⌈

2
2l+1

⌉

2 . . . s

⌈
n
2l

⌉

−
⌈

n
2l+1

⌉

n = s′
2s

′
3(s

′
4)

2(s′
5)

2 . . . (s′
q)

� q
2 � ∈ M .

If moreover s
1−� 1

2l
�

1 s
2−� 2

2l
�

2 . . . s
n−� n

2l
�

n ∈ M , then also

s
1−

⌈
1

2l+1

⌉

1 s
2−

⌈
2

2l+1

⌉

2 . . . s
n−

⌈
n

2l+1

⌉

n

= s
1−

⌈
1
2l

⌉

1 s
2−

⌈
2
2l

⌉

2 . . . s
n−

⌈
n
2l

⌉

n · s
⌈

1
2l

⌉

−
⌈

1
2l+1

⌉

1 s

⌈
2
2l

⌉

−
⌈

2
2l+1

⌉

2 . . . s

⌈
n
2l

⌉

−
⌈

n
2l+1

⌉

n ∈ M .

There exists r ∈ N such that 2r > n. Then for every 1 ≤ t ≤ n we have � t
2r � = 1.

Consequently, s1s2s3 . . . sn, s2s23s
3
4 . . . sn−1

n ∈ M .

Step III. We prove (iii) by induction on n. For n = 1 it is clear. Assume the
assertion for n and consider s1, s2, . . . , sn, sn+1 ∈ S(H), si rprH s j for i 
= j , such
that s1s22s

3
3 . . . snn s

n+1
n+1 ∈ M . By step II we have

s1s2s3 . . . snsn+1, s2s
2
3s

3
4 . . . sn−1

n snn+1 ∈ M .
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Then by the inductive assumption we have

sn+1, snsn+1, sn−1snsn+1, . . . , s2s3 . . . snsn+1 ∈ M .

(iii) ⇒ (ii)
Assume (iii). We prove (ii) by induction on n. For n = 0 it is clear.

Weassume the assertion forn, that is, if s0, s1, . . ., sn∈S(H), then s0s21s
22
2 . . .s2

n

n ∈M
implies sn−l

l−1∏

j=0
s2

j

n−l+ j+1 ∈ M for every l ∈ {0, 1, . . . , n}.

We prove the assertion for n + 1. Let a = s0s21s
22
2 . . . s2

n+1

n+1 ∈ M , where
s0, s1, . . . , sn+1 ∈ S(H). Then the element a can be presented in the form a =
t1t22 t

3
3 . . . tmm , where m = 2n+2 − 1 and t1, . . . , tm ∈ S(H), ti rprH t j , for i 
= j

(for details see the proof of (ii) ⇒ (vi) in [16], Proposition 1(b). From (iii) we
have tm, tm−1tm, . . . , t1t2 . . . tm ∈ M . Note that m is odd. Multiplying the elements

of the form tr tr+1 . . . tm for all odd r we obtain t1t2t23 t
2
4 . . . t

�m
2 �

m ∈ M . Multi-

plying the elements of that form for all even r we obtain t2t3t24 t
2
5 . . . t

�m
2 �

m ∈ M .

Since t2t3t24 t
2
5 . . . t

�m
2 �

m ∼H s1s22s
4
3 . . . s2

n

n+1, by the inductive assumption we have

sn+1−l

l−1∏

j=0
s2

j

(n+1)−l+ j+1 ∈ M for l ∈ {0, 1, . . . , n}. Moreover, t1t2t23 t
2
4 . . . t

�m
2 �

m ∼H

s0s1s22s
4
3 . . . s2

n

n+1, which gives the assertion for l = n + 1.

(iii) ⇔ (iv) follows from the equivalence of presentations (ii) and (iii) in Proposition
3.4 (for details see [16], the proofs of (iv) ⇒ (vi) in Proposition 1(a) and (vi) ⇒ (iv)
in Proposition 1(b).
(iv) ⇒ (v)
Assume (iv). Consider a ∈ H , b ∈ S(H) such that a | bn for some n ≥ 1, and ab ∈ M .
Let a = s1s2 . . . sm , where s1, . . . , sm ∈ S(H), si | si+1 for i = 1, . . . ,m − 1. Then
sm | bn , hence sm | b, because sm ∈ S(H). We have s1s2 . . . smb = ab ∈ M . By (iv)
we obtain s1, s2, . . . , sm, b ∈ M , so a, b ∈ M .
(v) ⇒ (iv)
Assume (v). Let s1s2 . . . sn ∈ M , where s1, . . . , sn ∈ S(H), si | si+1 for i =
1, . . . , n − 1. Put a = s1s2 . . . sn−1, b = sn . Then a | bn−1. By (v) we have
s1s2 . . . sn−1 ∈ M and sn ∈ M , and the assertion follows by induction. ��

5 Necessary and sufficient conditions forS(M) ⊂ S(H)

In this section we obtain a full characterization of submonoids of a factorial monoid
for which all square-free elements of a submonoid are square-free in a monoid.

Let us note that the formulation and the proof of Proposition 4.1 from [15] involve
only the multiplicative structure of a domain. Thus we have the equivalence of the
conditions (vi)–(viii) of the following Theorem 5.1. For the same reason implication
(viii) ⇒ (i) of Theorem 5.1 follows from the proof of implication (ii) ⇒ (i) of
Theorem 3.4 from [14].
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Theorem 5.1 Let H be a factorial monoid. Let M ⊂ H be a submonoid such that
M× = H×. The following conditions are equivalent:
(i) S(M) ⊂ S(H),
(ii) A(M) ⊂ S(H) and, for every a, b ∈ M,

a rprM b ⇒ a rprH b,

(iii) A(M) ⊂ S(H) and, for every a, b ∈ A(M),

a �M b ⇒ a rprH b,

(iv) M = H× × F(B), where B is any set of pairwise relatively prime (in H),
square-free non-units of H,
(v) for every n ≥ 1 and s1, s2, . . . , sn ∈ S(H) such that si rprH s j for i 
= j ,

s1s
2
2s

3
3 . . . snn ∈ M ⇒ s1, s2, . . . , sn ∈ M,

(vi) for every n ≥ 1, k1, . . . , kn ≥ 0 and q1, . . . , qn ∈ A(H) such that qi �H q j for
i 
= j ,

qk11 . . . qknn ∈ M ⇒ q
c(1)
i

1 . . . q
c(n)
i

n ∈ M for each i,

where k j = c( j)
r 2r + . . .+c( j)

0 20 for j = 1, . . . , n, with c( j)
i ∈ {0, 1} for i = 0, . . . , r .

(vii) for every n ≥ 0 and s0, . . . , sn ∈ S(H),

s2
n

n . . . s21s0 ∈ M ⇒ s0, . . . , sn ∈ M,

(viii) for every a ∈ H and b ∈ S(H),

a2b ∈ M ⇒ a, b ∈ M .

Proof First, observe that H is a BF-monoid and the submonoid M satisfies M× =
H× ∩ M , so M is also a BF-monoid, by [11], Corollary 1.3.3, p. 17. In particular, M
is atomic.
(i) ⇒ (iii) Assume S(M) ⊂ S(H). SinceA(M) ⊂ S(M), we haveA(M) ⊂ S(H).

Suppose that there exist a, b ∈ A(M) such that a �M b and a, b are not relatively
prime in H . Then t = gcdH (a, b) ∈ H \ H×, so a = tu, b = tv for some u, v ∈ H ,
urprHv. Sincea, b ∈ A(M),wehavea, b ∈ S(H), butu |H a,v |H b, sou, v ∈ S(H),
and then uv ∈ S(H), because u rprH v.

Now, we have ab = t2uv /∈ S(H), so ab /∈ S(M). Consequently, c2 |H ab for
some c ∈ M \ M×. We may assume that c is minimal (with respect to the natural
length function in H ). We have c2 |H t2uv, where uv ∈ S(H), so c |H t , because H
is factorial, and then t = cw for some w ∈ H .

We obtain a = tu = cwu, so wu ∈ S(H), since a ∈ S(H). We have ac =
c2wu /∈ S(H), so ac /∈ S(M), hence ac = e2h for some e ∈ M \ M×, h ∈ M . Since
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e2h = c2wu, where wu ∈ S(H), we infer e |H c. We have ab = c2w2uv = e2hwv,
and hence e2 |H ab. Therefore, e ∼H c by the minimality of c. Then e ∼M c, because
M× = H×. But ac = e2h, so a ∼M eh ∼M ch. Then a ∼M c, since a ∈ A(M) and
c ∈ M \ M×.

Analogously we show that b ∼M c, so a ∼M b, a contradiction.
(ii) ⇒ (iii) It is enough to note that for every a, b ∈ A(M),

a �M b ⇒ a rprM b.

Namely, if a, b ∈ A(M) are not relatively prime in M , then a = cd and b = ce for
some c ∈ M \ M×, d, e ∈ M , so d, e ∈ M× and a ∼M b.
(iii) ⇒ (ii) Assume (iii) and consider elements a, b ∈ M such that a rprM b. We
already know that M is atomic. Let a = a1 . . . am and b = b1 . . . bn be factorizations
into atoms in M . Since a rprM b, for all i, j we have ai �M b j , so ai rprH b j , but then
a rprH b.
(iii) ⇒ (iv) Assume (iii). Let B be a maximal (with respect to inclusion) set of
pairwise non-associated (in M) atoms of M . By (iii) the elements of B are pairwise
relatively prime in H . H is a factorial monoid, so B generates a free submonoid. Since
M is atomic and M× = H×, we obtain M = H× × F(B).
(iv) ⇒ (v) Assume (iv). Let a = s1s22s

3
3 . . . snn ∈ M , where s1, . . . , sn ∈ S(H), si rprH

s j for i 
= j . By (iv), the element a can be presented in the form a = ct1t22 t
3
3 . . . tmm

with c ∈ H×, ti = ∏ri
j=1 b

(i)
j ∈ M , ri ≥ 0,m ≥ n, and pairwise different all b(i)

j ∈ B.

Since b(i)
j are square-free and pairwise relatively prime in H , then t1, . . . , tm are also

square-free and pairwise relatively prime in H . Finally, for i = 1, . . . , n we have
si ∼H ti , so si ∈ M .
(v) ⇒ (vi) Assume (v). Let a = qk11 . . . qknn ∈ M , where q1, . . . , qn ∈ A(H),
qi �H q j for i 
= j , and k1, . . . , kn ≥ 0. Putm = max(k1, . . . , kn). For l = 1, . . . ,m
denote sl = ∏

j : k j=l q j . Then s1, s2, . . . , sm ∈ S(H) and si rprH s j for i 
= j . We

have a = s1s22 . . . smm , so s1, s2, . . . , sm ∈ M , by (v).

Now, let k j = c( j)
r 2r + · · · + c( j)

0 20 for j = 1, . . . , n, with c( j)
i ∈ {0, 1} for

i = 0, . . . , r . Note that if k j1 = k j2 , then c( j1)
i = c( j2)

i for each i , so we may denote

d(l)
i = c( j)

i for each j such that k j = l, where l = 1, . . . ,m. Then q
c(1)
i

1 . . . q
c(n)
i

n =
s
d(1)
i

1 . . . s
d(m)
i

m ∈ M . ��
The only type of factorizations from Proposition 3.4 we haven’t considered in

Theorem 4.3 nor Theorem 5.1 is (i). There is no surprise that in this case we obtain a
divisor-closed submonoid [10].

Proposition 5.2 Let H be a monoid such that each element a ∈ H can be presented in
the form a = s1s2 . . . sn, where s1, s2, . . . , sn ∈ S(H). Let M ⊂ H be a submonoid.
The following conditions are equivalent:
(i) for every a, b ∈ H,

ab ∈ M ⇒ a, b ∈ M .
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(ii) for every n ≥ 1 and s1, s2, . . . , sn ∈ S(H),

s1s2 . . . sn ∈ M ⇒ s1, s2, . . . , sn ∈ M .

6 Radical elements and the uniqueness of factorizations

Let H be a monoid. Recall from [21] that an element a ∈ H is called radical if the
principal ideal aH is radical, equivalently, if for arbitrary b ∈ H and n ≥ 1,

a | bn ⇒ a | b.

Denote by R(H) the set of radical elements of H , and by P(H) the set of prime
elements.

Clearly, every prime element is radical:

P(H) ⊂ R(H).

This is an analog of the fact that every atom is square-free.
Note also that every radical element is square-free, (see [15], Lemma 3.2 b), what

is an analog of the fact that a prime element is an atom.

Proposition 6.1 Let H be a monoid. Then

R(H) ⊂ S(H).

The next lemma completes Lemma 3.1.

Lemma 6.2 Let H be amonoid and let a ∈ R(H) and b ∈ H. If b | a, then b ∈ R(H).

Proof Let a ∈ R(H) and b | a. Let c ∈ H and b | cn for some n ≥ 1. By assumption
we have a = bd, where d ∈ H . Then a | cndn and this implies a | cd, so b | c. ��

In Lemma 6.3 (a), (b) below we recall Lemma 2 (a), (d) from [16] in terms of
monoids.

Lemma 6.3 Let H be a decomposition monoid.
(a) Let a, b, c ∈ H. If a | bc and a rpr b, then a | c.
(b) Let a1, . . . , an, b ∈ H. If ai rpr b for i = 1, . . . , n, then a1 . . . an rpr b.
(c) Let a, b1, . . . , bn ∈ H. If a | b1 . . . bn, then there exist a1, . . . , an ∈ H such that
a = a1 . . . an and ai | bi for i = 1, . . . , n.
(d) Let a1, . . . , an ∈ S(H), b ∈ H. If ai rpr a j for i 
= j and ai | b for i = 1, . . . , n,
then a1 . . . an | b.
Proof (c) Simple induction.

(d) Induction. Assume the assertion for n. Consider a1, . . . , an, an+1 ∈ S(H),
ai rpr a j for i 
= j , and b ∈ H such that ai | b for i = 1, . . . , n + 1. Put a = a1 . . . an .
Then, by the induction hypothesis, a | b, so b = ac for some c ∈ H . Moreover,
a rpr an+1 by (b). Since an+1 | ac, by (a) we obtain an+1 | c, and then aan+1 | ac. ��
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Now we can prove that in a decomposition monoid every square-free element is
radical. This is an analog of the fact that in a decomposition monoid atoms are primes.

Proposition 6.4 Let H be a decomposition monoid. Then

R(H) = S(H).

Proof Let a ∈ S(H). Assume that a | bn for some b ∈ H and n ≥ 1. Then, by
Lemma 6.3 (c), there exist a1, . . . , an ∈ H such that a = a1 . . . an and ai | b for
i = 1, . . . , n. Observe that a1, . . . , an ∈ S(H) and ai rpr a j for i 
= j , by Lemma 3.1,
so a1 . . . an | b by Lemma 6.3 (d). ��

In the rest of this section we concern uniqueness properties of factorizations (ii)–
(iv) and extractions (v), (vi) from Proposition 3.4. In an arbitrary monoid we have the
uniqueness of factorization (ii) and extraction (v) for radical elements.

Proposition 6.5 Let H be a monoid.
(a) For every r1, . . . , rn, t1, . . . , tn ∈ R(H) such that ri | ri+1 and ti | ti+1, i =
1, . . . , n − 1, if

r1r2 . . . rn ∼ t1t2 . . . tn,

then ri ∼ ti for i = 1, . . . , n.
(b) For every a, c ∈ H, b, d ∈ R(H) such that a | bm and c | dn for some m, n ≥ 1,
if

ab ∼ cd,

then a ∼ c and b ∼ d.

Proof (a) Assume that r1r2 . . . rn ∼ t1t2 . . . tn, where r1, . . . , rn, t1, . . . , tn ∈ R(H),
ri | ri+1 and ti | ti+1 for i = 1, . . . , n − 1. We have rn | t1 . . . tn , so rn | tnn . Since
rn ∈ R(H) we obtain rn | tn . Analogously, we get tn | rn . Hence rn ∼ tn and
r1 . . . rn−1 ∼ t1 . . . tn−1. Then we repeat the above reasoning for rn−1 and tn−1, etc.
(b) Assume that ab ∼ cd, where a, c ∈ H , b, d ∈ R(H), a | bm and c | dn for
some m, n ≥ 1. We see that b | cd, so b | dn+1. Since b ∈ R(H) we obtain b | d.
Analogously, we get d | b, so b ∼ d, and then a ∼ c. ��

In a decomposition monoid we have the uniqueness of factorization (iii) from
Proposition 3.4.

Proposition 6.6 Let H be a decomposition monoid. For every s1, . . . , sn, t1, . . ., tn ∈
S(H) such that si rpr s j and ti rpr t j for i 
= j , if

s1s
2
2s

3
3 . . . snn ∼ t1t

2
2 t

3
3 . . . tnn ,

then si ∼ ti for i = 1, . . . , n.
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Proof Assume that s1s22s
3
3 . . . snn ∼ t1t22 t

3
3 . . . tnn , where s1, . . . , sn, t1, . . . , tn ∈ S(H),

si rpr s j and ti rpr t j for i 
= j . Put s′
i = si . . . sn , t ′i = ti . . . tn for i = 1, . . . , n. Then

s′
1s

′
2 . . . s′

n ∼ t ′1t ′2 . . . t ′n .

Note that s′
i , t

′
i ∈ S(H) for i = 1, . . . , n by Lemma 3.2. Since s′

i+1 | s′
i and t ′i+1 | t ′i

for i = 1, . . . , n − 1, from Proposition 6.5 (a) we obtain s′
i ∼ t ′i for i = 1, . . . , n.

Then si ∼ ti for i = 1, . . . , n. ��
Finally, recall from [16], Proposition 2 (i), (ii), the uniqueness of factorization (iv)

and extraction (vi) for a GCD-monoid. It was formulated for a GCD-domain, but the
proof is valid for a GCD-monoid.

Proposition 6.7 Let H be a GCD-monoid.
(a) For every s0, s1, . . . , sn, t0, t1, . . . , tn ∈ S(H), if

s0s
2
1s

22
2 . . . s2

n

n ∼ t0t
2
1 t

22
2 . . . t2

n

n ,

then si ∼ ti for i = 0, . . . , n.
(b) For every a, c ∈ H, b, d ∈ S(H), if

a2b ∼ c2d,

then a ∼ c and b ∼ d.

7 Classifications of monoids with respect to square-free
factorizations

In this section we show how to organize all the variety of cases when properties con-
sidered in Proposition 3.4 hold or do not. We would like to emphasize two advantages
of this situations. First: it yields mostly non-trivial questions about existence of 7,
19, 22, or even 55 monoids, respectively. Second: it provides many ways of classi-
fying monoids with respect to possessing or not different square-free factorizations
or extractions, which may be more subtle than with respect to irreducible factoriza-
tions.

There are 7 possible combinations of logical values for properties (i)–(iv).

(i) (ii) (iii) (iv)

+ +/− + +/−
+ − − +/−
− − − −
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We would like to involve the following properties of monoids: ACCP, atomicity,
GCD, decomposition. We introduce the value of “ACCP/atm” as follows.

ACCP atm ACCP/atm

+ + 2
− + 1
− − 0

Similarly, we introduce the value of “GCD/decomp”.

GCD decomp GCD/decomp

+ + 2
− + 1
− − 0

Now, we can collect all possibilities for conditions (i)–(vi) in Proposition 3.4,
taking into account the properties mentioned above. By 1∗ below we denote that 1 as
the value of “ACCP/atm” is possible only when the value of “GCD/decomp” is 0, and
also 1 as the value of “GCD/decomp” is possible only when the value of “ACCP/atm”
is 0. In the leftmost column we indicate the number of cases for “ACCP/atm” and
“GCD/decomp” with respect to given values of (i)–(iv). In the rightmost column we
indicate the number of cases for extractions (v) and (vi) also with respect to (i)–(iv).

cases ACCP/atm GCD/decomp (i) (ii) (iii) (iv) (v) (vi) cases

5 2/1∗/0 2/0 + + + + + + 1
2 1/0 0 + + + − + +/− 2
3 2/1/0 0 + − + + +/− + 2
2 1/0 0 + − + − +/− +/− 4
4 2/1∗/0 1∗/0 + − − + +/− + 2
3 1∗/0 1∗/0 + − − − +/− +/− 4
3 0 2/1/0 − − − − +/− +/− 4

In the above table we take into account the following remark.

Reviewer’s remark Since every square-free element of a decomposition monoid is rad-
ical, it follows from [20], Corollary 4.5, that every decompositionmonoid that satisfies
property (ii) has to be a GCD-monoid. Note that the notion of a GCD-monoid is equiv-
alent to the notion of a t-Bézout monoid in [20]. Therefore, if H is a decomposition
monoid that satisfies property (ii), then every principal ideal of H is a product of
finitely many pairwise comparable radical principal ideals of H , and hence H is a
t-Bézout monoid (i.e., a GCD-monoid) by [20], Corollary 4.5.

Let us extract possible combinations of (i)–(iv) for: atomic, ACCP, decomposition
and GCD-monoids. We have:
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• 6 possible combinations for atomic monoids,

(i) (ii) (iii) (iv)

+ + + +/−
+ − +/− +/−

• 3 possible combinations for ACCP-monoids,

(i) (ii) (iii) (iv)

+ + + +
+ − +/− +

• 4 possible combinations for decomposition monoids,

(i) (ii) (iii) (iv)

+ + + +
+ − − +/−
− − − −

• 2 possible combinations for GCD-monoids.

(i) (ii) (iii) (iv)

+ + + +
− − − −

There are 22 classes of monoids with respect to properties:

ACCP, atomicity, GCD, decomposition, (i)–(iv).

Thequestion if all of themare non-empty is, in our opinion, of fundamental importance.
Extraction (vi) is a basic tool for exploring properties of subrings connected with

square-free elements. This is why we think it is reasonable to consider the whole set
of properties (i)–(vi). There arises a question if all combinations of logical values are
possible, i.e., a question about 19 examples.

There are 55 classes of monoids with respect to all properties:

ACCP, atomicity, GCD, decomposition, (i)–(vi).

We don’t think that all of them are non-empty. It may be true, e.g., that for ACCP-
monoids there is (ii) ⇔ (v). Hence, we state a question about 55 examples ofmonoids.
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8 Some examples

Example 8.1 Put

Bp,q = 〈x1, x2, x3, . . . , y1, y2, y3, . . . | yi = x p
i+1y

q
i+1, i = 1, 2, 3, . . .〉,

where p, q are positive integers.
Then Bp,q is a non-factorial GCD-monoid for any p, q.

(a) B1,1 satisfies all conditions (i)–(vi), in particular, it is a non-atomic monoid satis-
fying (ii), mentioned in Remark 3.5.6.
(b) if q is even, then Bp,q satisfies (vi) and no one of (i)–(v), in particular, it is a
non-factorial GCD-monoid satisfying (vi) ∧ ¬(v), mentioned in Remark 3.5.1.
(c) if q is odd and (p, q) 
= (1, 1), then Bp,q satisfies no one of the conditions (i)–(vi).

Monoid B1,1 gives an important argument in the discussion of how property (i)
extends atomicity in the context of diagram (1.6):

BF ⇒ ACCP ⇒ atomic ⇒ (i)
⇒

factorial
⇒

GCD ⇒ decomposition ⇒ atoms are primes

Namely, we loose connection with the lower line of the diagram since B1,1 satisfies
the strongest one—GCD—and is not factorial, so in general the conjunction of (i) and
GCD does not imply factoriality.

Example 8.2 Let Q≥0 denote the set of all non-negative rational numbers. H =
(Q≥0,+) is a GCD-monoid, because gcd(a, b) = min{a, b} for all a, b ∈ H . It
satisfies condition (vi), because for any a ∈ H we have a = a

2 + a
2 +0 and 0 ∈ S(H).

However it does not satisfy any of conditions (i)–(iv), because S(H) = {0} and
0 + . . . + 0 
= a for a 
= 0. Neither condition (v), because if c ∈ S(H), then c = 0
and 0 + . . . + 0 is not divisible in (Q≥0,+) by a non-zero a (here a | b iff a ≤ b).
Clearly H is also non-factorial.

Example 8.3 For a non-negative integer k we denote by N≥k the set of integers greater
or equal to k. Then H = (N≥2 ∪ {0},+) is not a decomposition monoid, since
A(H) = {2, 3} and P(H) = ∅. See also Sect. 9.
Example 8.4 Let L and F be fields such that L ⊂ F . Consider T = L + xF[x]. Then
the atoms of the ring T are known:

Theorem 8.5 ([3], Theorems 2.9 and 5.3).
T is a half-factorial domain and A(T ) = {ax; a ∈ F \ {0}} ∪ {a(1 + x f (x)); a ∈
L \ {0}, f ∈ F[x], 1 + x f (x) ∈ A(F[x])}.

We can also determine all the square-free elements of T . Proposition 8.6, Corol-
lary 8.7 and Example 8.8 have been proposed by the reviewer.
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Proposition 8.6 Let L and F be fields such that L ⊂ F and let T = L + xF[x]. Then
S(T ) = (S(F[x]) ∩ T ) ∪ {x2h; h ∈ S(F[x]), h(0) /∈ {a2b; a ∈ F, b ∈ L}}.
Proof Let f ∈ S(T )\S(F[x]). There are some g ∈ F[x] \ F[x]× and k ∈ F[x] such
that f = g2k. Set c = g(0). If c 
= 0, then since c−1g, c2k ∈ T and f = (c−1g)2c2k,
we have c−1g ∈ T× and g ∈ F[x]×, a contradiction. Therefore, c = 0, and thus
f = x2h for some h ∈ F[x]. Since f ∈ S(T ), we infer h(0) 
= 0. If h(0) = a2b for
some a ∈ F and b ∈ L , then ax, a−2h ∈ T , and f = (ax)2a−2h, which contradicts
the fact that f ∈ S(T ). This implies that h(0) /∈ {a2b; a ∈ F, b ∈ L}. Let r , s ∈ F[x]
be such that h = r2s. Since h(0) 
= 0, we infer r(0) 
= 0. Set d = r(0). Then
f = (d−1r)2d2sx2 and d−1r , d2sx2 ∈ T . Consequently, d−1r ∈ T×, and hence
r ∈ F[x]×. This shows that h ∈ S(F[x]).

Since F[x]×∩T = T×, it follows that S(F[x])∩T ⊂ S(T ). Now let h ∈ S(F[x])
be such that h(0) /∈ {a2b; a ∈ F, b ∈ L}. It remains to show that x2h ∈ S(T ). Clearly,
x2h ∈ T . Let r , s ∈ T be such that x2h = r2s. Assume that r ∈ xF[x]. Then r = xt
for some t ∈ F[x], so h = t2s. Therefore, h(0) = t(0)2s(0) ∈ {a2b; a ∈ F, b ∈ L},
a contradiction. Consequently, r /∈ xF[x], and thus s = x2w for some w ∈ F[x]. We
infer h = r2w, and hence r ∈ F[x]× ∩ T = T×. ��
Corollary 8.7 Let L and F be fields such that L ⊂ F and let T = L + xF[x]. Then
S(T ) = S(F[x])∩T iff F = {a2b; a ∈ F, b ∈ L}. In particular, if F is algebraically
closed, then S(T ) = S(F[x]) ∩ T .

Proof It follows from Proposition 8.6 that if F = {a2b; a ∈ F, b ∈ L}, then S(T ) =
S(F[x]) ∩ T . Now let F 
= {a2b; a ∈ F, b ∈ L}. There is some c ∈ F \ {a2b; a ∈
F, b ∈ L}. By Proposition 8.6, we have x2c ∈ S(T ). Moreover, x2c /∈ S(F[x]), and
thus S(T ) 
= S(F[x])∩T . Finally, if F is algebraically closed, then F = {a2; a ∈ F}
and the statement follows. ��
Example 8.8 Let F be a field with char(F) = 2 such that F is not perfect, let L be the
prime subfield of F and let T = L + xF[x]. Then S(T ) 
= S(F[x]) ∩ T .

Proof Since char(F) = 2 and F is not perfect, we have F 
= {a2; a ∈ F}. Since
L = {0, 1}, this implies that F 
= {a2b; a ∈ F, b ∈ L}. It is an immediate consequence
of Corollary 8.7 that S(T ) 
= S(F[x]) ∩ T . ��

In particular, if T = R + xC[x], then A(T ) = {a + bx; a ∈ R, b ∈ C \ {0}} and
S(T ) = {a ∏

b∈B(1+bx); a ∈ R\{0}, B ⊂ C, B is finite}∪{ax ∏

b∈B(1+bx); a ∈
C \ {0}, B ⊂ C, B is finite}.

UsingCorollary 8.7we easily verify that if F is algebraically closed, then L+xF[x]
fulfills (i)–(vi).

If F and L are finite fields and it is a proper extension, then L + xF[x] is a non-
factorial ACCP domain (see [2,9]).

9 The number of square-free elements of a reducedmonoid

It is obvious that an arbitrary non-negative integer can be the number of atoms of a
monoid. For example it can be the number of its free generators. In a group every
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element is square-free, since there is no non-invertible element. Hence, any positive
integer can be the number of square-free elements of a monoid. It is not so obvious, but
still true, that an arbitrary positive integer can be the number of square-free elements
of a reduced monoid. It also remains valid if we assume that this reduced monoid is
cancellative.

For integers a, b we define [a, b] = {c ∈ Z; a ≤ c ≤ b}, that is, the set of all
consecutive integers from a to b.

Theorem 9.1 Let n be a positive integer. Then there exists a reduced cancellative
monoid H such that # S(H) = n.

Proof Let m be an integer ≥ 2. Consider a monoid

H = N≥2m ∪ {0} ∪ {m}

with the operation of addition.
Clearly A(H) = {m} ∪ [2m + 1, 3m − 1] and #A(H) = m. Then S(H) =

{0,m} ∪ [2m + 1, 3m − 1] ∪ [3m + 1, 4m − 1] and consequently # S(H) = 2m.
Now let m be an integer ≥ 3 and consider a monoid

H = N≥2m−1 ∪ {0} ∪ {m}.

In this caseA(H) = {m, 2m−1}∪[2m+1, 3m−2] and #A(H) = m. Then S(H) =
{0,m, 2m − 1} ∪ [2m + 1, 3m − 1] ∪ [3m + 1, 4m − 3] and finally # S(H) = 2m − 1.

So far we have proved the assertion for n ≥ 4. If n = 1 we can take H = {0}.
If n = 2 we may consider H = N≥0. If n = 3 we can take the submonoid of
Q≥0 × Q≥0 (with the operation of addition) generated by (1, 0), (0, 1) and elements
of the form ( 1

2n , 1
2n ) for all positive integers n. Then the set of square-free elements of

that submonoid is {(0, 0), (1, 0), (0, 1)}. ��
Note that the proof could not be based solely on the monoids of the form Hk =

N≥k ∪ {0}, because # S(Hk) grows faster than k.
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