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ON SOME FACTORIAL PROPERTIES OF SUBRINGS

by Piotr J ↪edrzejewicz,  Lukasz Matysiak and Janusz Zieliński

Abstract. We discuss various factorial properties of subrings as well as
properties involving irreducible elements and square-free elements, in par-
ticular ones connected with Jacobian conditions.

Introduction. Throughout the paper, by a ring we mean a commutative
ring with unity. By a domain we mean a (commutative) ring without zero
divisors. By R∗ we denote the set of all invertible elements of a ring R. If R
is a domain, then by R0 we denote its field of fractions. If elements a, b ∈ R
are associated in a ring R, we write a ∼R b. We write a |R b if b is divisible
by a in R. Furthermore, we write a rprR b if a and b are relatively prime in R,
that is, have no common non-invertible divisors. We use a subscript indicating
the ring when we compare properties in a ring A and in its subring R. If R
is a ring, then by IrrR we denote the set of all irreducible elements of R, and
by Sqf R we denote the set of all square-free elements of R, where an element
a ∈ R is called square-free if it cannot be presented in the form a = b2c with
b ∈ R \R∗, c ∈ R.

Now, let A = k[x1, . . . , xn] be the algebra of polynomials over a field k of
characteristic zero. Let f1, . . . , fr ∈ A be algebraically independent over k,
where r ∈ {1, . . . , n}. Let R = k[f1, . . . , fr]. By jacf1,...,frxi1

,...,xir
we denote the

Jacobian determinant of f1, . . . , fr with respect to xi1 , . . . , xir . We recall
from [17] the following generalization of the Jacobian Conjecture.

Conjecture. If gcd
(

jacf1,...,frxi1
,...,xir

, 1 6 i1 < . . . < ir 6 n
)
∈ k \ {0}, then

R is algebraically closed in A.

Note that by Nowicki’s characterization the above assertion means that
R is a ring of constants of some k-derivation of A ([19], Theorem 5.4, [18],

2010 Mathematics Subject Classification. Primary 13F20, Secondary 14R15.
Key words and phrases. Irreducible element, square-free element, factorization, Jacobian

Conjecture.
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Theorem 4.1.4, [6], 1.4). Note also that case r = 1 is true ([2], Proposition
14, see also [14], Proposition 4.2). Moreover, we refer the reader to van den
Essen’s book [7] for information on the Jacobian Conjecture.

Generalizing the results of [16] and [4], the above gcd condition was ex-
pressed in terms of irreducible and square-free elements.

Theorem ([17], 2.4) The following conditions are equivalent:

(i) gcd
(

jacf1,...,frxi1
,...,xir

, 1 6 i1 < . . . < ir 6 n
)
∈ k \ {0},

(ii) IrrR ⊂ Sqf A,

(iii) Sqf R ⊂ Sqf A.

Finally recall that condition (iii) is in a much more general case equivalent
to some factoriality property.

Theorem ([17], 3.4) Let A be a unique factorization domain. Let R be
a subring of A such that R∗ = A∗ and R0 ∩ A = R. The following conditions
are equivalent:

(i) Sqf R ⊂ Sqf A,

(ii) for every x ∈ A, y ∈ Sqf A, if x2y ∈ R \ {0}, then x, y ∈ R.

A subring R satisfying the above condition (ii) is called square-factorially
closed in A ( [17], Definition 3.5). Under the assumptions of Theorem 3.4,
square-factorially closed subrings are root closed ([17], Theorem 3.6), see [1]
and [5] for information on root closed subrings.

The above theorem corresponds with the known fact that a subring R of
a UFD A such that R∗ = A∗ is factorially closed in A if and only if IrrR ⊂
IrrA. Recall that a subring R of A is called factorially closed iff for every
x, y ∈ A, xy ∈ R \ {0} implies x, y ∈ R. Rings of constants of locally nilpotent
derivations in domains of characteristic zero are factorially closed (see [8] and
[6] for details). In a more general setting, with respect to the multiplicative
structure only, a submonoid satisfying such a condition is called divisor-closed
(see [9] for details).

A general question stated in [17], when conditions (ii) or (iii) of Theorem
2.4 imply algebraic closedness of R in A, inspired us to study their relations
with other conditions of this type (see Proposition 3.3 below). Theorem 3.4
above motivates us to investigate in Section 4 various properties having a form
of factoriality, in particular those similar to (ii).

The aim of this paper is to collect or develop various conditions related
to the ones above. Of course, the general question stated in the mentioned
conjecture is very difficult. This is why it may be helpful to study similar
properties first.
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1. Divisibility, relative primeness, etc. in a subring. In this section
we describe relationships between various conditions on a subring of a domain
of arbitrary characteristic.

If R is a subring of a domain A, the condition

R0 ∩A = R

appears in many situations, the most important example being Hilbert’s 14th
Problem. It appears also in characterizations of rings of constants of deriva-
tions ([19], Theorem 5.4, [18], Theorem 4.1.4, [10], Theorem 1.1, [11], Theo-
rem 2.5), as well as in assumptions of theorems concerning necessary or suffi-
cient conditions for p-bases of such rings ([12], Theorems 1.4, 1.5, [15], Propo-
sitions 2.1, 2.2). According to the multiplicative structure, a submonoid of
a (commutative cancellative) monoid satisfying the above condition is called
saturated ([9], Definition 2.4.1, p. 68, Corollary 2.4.3, p. 70).

Proposition 1.1. Let A be a domain, and R be a subring of A. Then the
following conditions are equivalent:

(i) R0 ∩A = R,

(ii) R = L ∩A for some subfield L ⊂ A0,

(iii) for every a ∈ R, b ∈ A, if ab ∈ R \ {0}, then b ∈ R,

(iv) for every a, b ∈ R, if a |A b, then a |R b.

Proof. (i)⇔ (iv) Obviously, R ⊂ R0 ∩A. Thus the equality R0 ∩A = R
is equivalent to the inclusion R0∩A ⊂ R, the latter meaning that for arbitrary
a, b ∈ R, a 6= 0, if b

a ∈ A, then b
a ∈ R, which is statement (iv).

(i)⇒ (ii) Put L = R0.

(ii) ⇒ (i) If R = L ∩ A, then R ⊂ L, and since L is a field, we have R0 ⊂ L.
Hence, R0 ∩A ⊂ L ∩A = R. The opposite inclusion is evident.

(iii)⇒ (iv) Let a, b ∈ R. If b = 0, then obviously a |R b. Let b 6= 0. If a |A b,
then b = ac for some c ∈ A. By (iii) we have c ∈ R, and consequently a |R b.

(iv)⇒ (iii) If ab ∈ R \ {0} for a ∈ R, b ∈ A, then a |A ab. Therefore, a |R ab,
by (iv). Hence ab = ar for some r ∈ R. If a 6= 0, then b = r ∈ R, since A is a
domain. If a = 0, then ab = 0, contrary to ab ∈ R \ {0}.

Proposition 1.2. Let A be a domain, and R be a subring of A. Then the
following conditions are equivalent:

(i) R∗ = A∗ ∩R,

(ii) for every a ∈ R, if a ∈ A∗, then a ∈ R∗,

(iii) for every a, b ∈ R, if a rprA b, then a rprR b.
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Proof. (i) ⇔ (ii) Clearly R∗ ⊂ A∗ ∩ R. Therefore, the equality R∗ =
A∗ ∩R is equivalent to the inclusion A∗ ∩R ⊂ R∗, the latter being actually a
formulation of condition (ii).

(ii) ⇒ (iii) Assume that (ii) holds and consider elements a, b ∈ R relatively
prime in A. If c is a common divisor of a and b in R, then it is obviously their
common divisor in A. Hence c is invertible in A, and then by (ii) it is invertible
in R. Consequently, a and b are relatively prime in R.

(iii) ⇒ (ii) It is sufficient to notice that a ∈ R is invertible (in A or R,
respectively) if and only if it is relatively prime with 1.

Proposition 1.3. Let A be a domain. Let R be a subring of A. Consider
the following conditions:

(i) for every a, b ∈ R, if a |A b, then a |R b,

(ii) for every a, b ∈ R, if a ∼A b, then a ∼R b,

(iii) for every a, b ∈ R, if a rprA b, then a rprR b.

(iv) for every a ∈ R, if a ∈ IrrA, then a ∈ IrrR.

Then

(i)⇒ (ii)⇒ (iii)⇒ (iv).

Proof. (i) ⇒ (ii) It suffices to note that a, b ∈ R are associated (in A or R,
respectively) if and only if a | b and b | a.

(ii) ⇒ (iii) It suffices to observe that a ∈ R is invertible (in A or R, respec-
tively) if and only if it is associated with 1. Then the assertion follows from
the equivalence (ii)⇔ (iii) in Proposition 1.2.

(iii)⇒ (iv) Assume that (iii) holds and consider a ∈ R reducible in R. Then
a = bc for some elements b, c ∈ R not invertible in R. From (iii) we deduce
that b and c are not invertible in A (see Proposition 1.2), hence a is reducible
in A.

As a consequence of Propositions 1.1, 1.2 and 1.3, we obtain Corollary 1.4.

Corollary 1.4. If A is a domain and R is a subring of A, then the
following implications hold:

R0 ∩A = R ⇒
A∗ ∩R = R∗ ⇒ R ∩ IrrA ⊂ IrrR.

⇒
R∗ = A∗

It is easily seen that none of the one-way implications of Proposition 1.3
can be reversed in general.

Example 1.5. If A is equal to k[x], a polynomial ring in one variable over
a field k, and R = k[x2, x3], then condition (i) is not fulfilled, because x3 is
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divisible by x2 in A, but it is not in R. However (ii) holds, because A∗ = k\{0},
hence if f and g are associated in A, then f = cg for some c ∈ k \ {0}, that is,
f and g are associated in R.

Example 1.6. If A = k(x)[y] and R = k[xy, y], where k is a field, then
condition (ii) does not hold, because xy and y are associated in A, yet they are
not in R. Condition (iii) is fulfilled, since A∗ ∩ R = k(x) ∩ k[xy, y] = k = R∗

(see Proposition 1.2).

Example 1.7. If A is a field and R is not a field, then (iii) is not fulfilled,
because an irreducible element of R is not relatively prime with 1 in R, but is
relatively prime with 1 in A. Condition (iv) holds, since IrrA = ∅.

It is worth noting that the conditions in Corollary 1.4 have no immediate
relationship with unique factorization in R. More precisely, the strongest con-
ditions in Corollary 1.4 do not imply unique factorization in R, and unique
factorization in R does not imply the weakest of the conditions in question.
Here are examples.

Example 1.8. Let A = k[x, y] and R = k[x2, y2, xy], where k is a field.
Then both conditions R∗ = A∗ and R0 ∩ A = R are fulfilled, but there is no
unique factorization in R, since x2 · y2 = (xy)2.

Example 1.9. Let A = k(x)[y] and R = k[x, y], where k is a field. Clearly
R is a unique factorization domain, but R∩IrrA ⊂ IrrR does not hold, because
xy is irreducible in A and reducible in R.

2. Factoriality with respect to a subring. We introduce the notion of
factorial closedness of one subring with respect to factors from another subring.

Definition 2.1. Let B be a subring of A. The subring R of A is called
B-factorially closed, if, whenever a ∈ A, b ∈ B and ab ∈ R \ {0}, then a ∈ R.
If R is R-factorially closed, then we call it self-factorially closed.

Note that “A-factorially closed” in the sense of the above definition is
equivalent to the usual notion of “factorially closed” (in A).

Now, let A be a domain of characteristic p > 0 and let R be a subring of A.
An element a ∈ A is called separably algebraic over R if w(a) = 0 for some
irreducible polynomial w(T ) ∈ R0[T ] \R0[T

p], that is, a is separably algebraic
over the subfield R0 as an element of the field A0 (see [13], Definition 2.1).
The subring R is called separably algebraically closed in A if all elements of A
separably algebraic over R belong to R.

Proposition 2.2. Let A be a domain of characteristic p > 0 and let R be
a subring of A such that Ap ⊂ R, where Ap = {ap, a ∈ A}. Then the following
conditions are equivalent:
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(i) the ring R is separably algebraically closed in A,

(ii) R0 ∩A = R,

(iii) the ring R is self-factorially closed in A,

(iv) the ring R is Ap-factorially closed in A.

Proof. (i)⇔ (ii) was stated in [13], Proposition 2.2,

(ii)⇔ (iii) follows from Lemma 1.1,

(iii)⇒ (iv) is obvious.

(iv) ⇒ (iii) Assume that condition (iv) holds and consider a ∈ A and b ∈ R
such that ab ∈ R \ {0}. Then abp ∈ R \ {0} so, by the assumption, a ∈ R.

If R is a finitely generated K-algebra such that Ap ⊂ R, then the above
equivalent conditions characterize R as a ring of constants of some K-deriva-
tion of A.

3. A general diagram of implications. In this section we consider
various properties similar to IrrR ⊂ Sqf A and Sqf R ⊂ Sqf A, and we present
basic relations between them.

Given a ring R, we denote the following sets:

– PrimeR of all prime elements of R,
– GprR of (single) generators of principal radical ideals of R,
– RdlR of radical ideals of R (see [3], p. 67).

Lemma 3.1. If R is a ring, then:

a) IrrR ⊂ Sqf R,

b) PrimeR ⊂ GprR.

Proof. a) Consider an element x ∈ R. Assume that x /∈ Sqf R, that is
x = y2z, where y ∈ R \R∗, z ∈ R. Then x = y · (yz), where y, yz ∈ R \R∗, so
x /∈ IrrR.

b) This holds because every prime ideal is radical.

Lemma 3.2. If R is a domain, then:

a) PrimeR ⊂ IrrR,

b) GprR ⊂ Sqf R.

Proof. a) This fact is well known.

b) Consider an element r ∈ GprR. Let r = x2y, where x, y ∈ R. We have
(xy)2 = ry, so (xy)2 ∈ Rr, and then xy ∈ Rr, because Rr is a radical ideal.
We obtain xy = rz, so xy = x2yz, and hence 1 = xz.

From these two lemmas we obtain the following proposition.
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Proposition 3.3. Let A be a domain. Let R be a subring of A. Then the
following implications hold:

IrrR ⊂ IrrA ⇒ PrimeR ⊂ IrrA ⇐ PrimeR ⊂ PrimeA⇐ ∀I∈SpecRAI ∈ SpecA
⇓ ⇓ ⇓ ⇓

IrrR ⊂ Sqf A ⇒ PrimeR ⊂ Sqf A⇐ PrimeR ⊂ GprA ⇐ ∀I∈SpecRAI ∈ RdlA
⇑ ⇑ ⇑ ⇑

Sqf R ⊂ Sqf A⇒ GprR ⊂ Sqf A ⇐ GprR ⊂ GprA ⇐ ∀I∈RdlRAI ∈ RdlA

4. Some factorial conditions for subrings. The last section contains
various properties in a factorial form. In the first proposition we express a
condition from [17], Theorem 3.4 in terms of irreducible and square-free fac-
torizations.

Proposition 4.1. Let A be a UFD and let R be a subring of A such that
R∗ = A∗. Then the following conditions are equivalent:

(i) ∀ a ∈ A, ∀ b ∈ Sqf A, a2b ∈ R \ {0} ⇒ a, b ∈ R,

(ii) ∀ s0, . . . , sn ∈ Sqf A, s2
n

n . . . s21s0 ∈ R⇒ s0, . . . , sn ∈ R,

(iii) ∀ q1, . . . , qn ∈ IrrA, qi 6∼A qj , i 6= j, ∀ k1, . . . , kn > 0

qk11 . . . qknn ∈ R⇒ ∀ i, qc
(1)
i

1 . . . q
c
(n)
i

n ∈ R,

where kj = c
(j)
r 2r + . . . + c

(j)
0 20 for j = 1, . . . , n, and c

(j)
i ∈ {0, 1} for

i = 0, . . . , r.

Proof. (ii)⇒ (i) Assume (ii) and consider elements a ∈ A, b ∈ Sqf A. Let

a = s2
n

n . . . s21s0, where s0, . . . , sn ∈ Sqf A. If a2b = s2
n+1

n . . . s2
2

1 s20b ∈ R \ {0},
then sn, . . . , s1, s0, b ∈ R by (ii), and then a = s2n . . . s

2
1s0 ∈ R.

(iii)⇒ (ii) Assume condition (iii). Let s0, . . . , sn ∈ Sqf A satisfy s2
n

n . . . s21s0 ∈

R. We can write si = uiq
c
(1)
i

1 . . . q
c
(m)
i

m , where ui ∈ A∗, q1, . . . , qm ∈ IrrA with

qj 6∼A ql for j 6= l and c
(j)
i ∈ {0, 1}. Then s2

n

n . . . s21s0 = u2
n

n . . . u21u0 ·q
k1
1 . . . qkmm ,

where kj = c
(j)
n 2n + . . . + c

(j)
1 2 + c

(j)
0 . By the assumption, if qk11 . . . qkmm ∈ R,

then q
c
(1)
i

1 . . . q
c
(m)
i

m ∈ R for i = 1, 2, . . . , n. Hence s0, . . . , sn ∈ R.

(ii)⇒ (iii) Assume (ii). Let qk11 . . . qknn ∈ R, where q1, . . . , qn ∈ IrrA, qj 6∼A ql

for j 6= l. Put kj = c
(j)
r 2r + . . .+c

(j)
1 2+c

(j)
0 for j = 1, . . . , n, where c

(j)
i ∈ {0, 1}.

Let si = q
c
(1)
i

1 . . . q
c
(n)
i

n . By the assumption, since s2
n

n . . . s21s0 ∈ R, we obtain
s0, . . . , sn ∈ R.

(i)⇒ (ii) Simple induction.

Note that factorial closedness can be expressed in the following way.
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Proposition 4.2. Let A be a UFD and let R be a subring of A such that
R∗ = A∗. Then the following conditions are equivalent:

(i) ∀ a, b ∈ A, ab ∈ R \ {0} ⇒ a, b ∈ R,

(ii) ∀ q1, . . . , qn ∈ IrrA, ∀ k1, . . . , kn > 1, qk11 . . . qknn ∈ R⇒ q1, . . . , qn ∈ R.

In the next two propositions we consider factorizations with respect to
relatively prime elements.

Proposition 4.3. Let A be a UFD and let R be a subring of A such that
R∗ = A∗. Then the following conditions are equivalent:

(i) ∀ a, b ∈ A, a rprA b, ab ∈ R \ {0} ⇒ a, b ∈ R,

(ii) ∀ a1, . . . , an ∈ A, ai rprA aj , i 6= j, a1 . . . an ∈ R \ {0} ⇒ a1, . . . , an ∈ R,

(iii) ∀ q1, . . . , qn ∈ IrrA, qi 6∼A qj , i 6= j, ∀ k1, . . . , kn > 1,

qk11 . . . qknn ∈ R⇒ qk11 , . . . , qknn ∈ R.

Proof. We see that (i) and (iii) are special cases of (ii).

(i)⇒ (ii) Simple induction.

(iii) ⇒ (i) Assume (iii). Consider a, b ∈ A, a rprA b, such that ab ∈ R \ {0}.
Put a = uqk11 . . . qkss and b = vq

ks+1

s+1 . . . qknn , where u, v ∈ A∗, q1, . . . , qn ∈ IrrA,

qi 6∼A qj for i 6= j. By the assumption, since ab = uvqk11 . . . qkss q
ks+1

s+1 . . . qknn ∈ R,

we have qk11 , . . . , qkss , q
ks+1

s+1 , . . . , qknn ∈ R. Finally, a = uqk11 . . . qkss ∈ R and

b = vq
ks+1

s+1 . . . qknn ∈ R.

Proposition 4.4. Let A be a UFD and let R be a subring of A such that
R∗ = A∗. Then the following conditions are equivalent:

(i) ∀ a, b ∈ A, a rprA b, ∀ k > 1, (akb ∈ R \ {0} ⇒ a, b ∈ R),

(ii) ∀ q1, . . . , qn ∈ IrrA, qi 6∼A qj , i 6= j, ∀k1, . . . , kr > 1, r 6 n,

qk11 . . . qkrr qr+1 . . . qn ∈ R⇒ q1, . . . , qr, qr+1 . . . qn ∈ R.

Proof. (i) ⇒ (ii) Assume (i). Let qk11 . . . qkrr qr+1 . . . qn ∈ R for some
pairwise non-associated q1, . . . , qn ∈ IrrA and for some k1, . . . , kr > 1. By
the assumption we have q1 ∈ R and qk22 . . . qkrr qr+1 . . . qn ∈ R, then q2 ∈ R and

qk33 . . . qkrr qr+1 . . . qn ∈ R, and so on, until we obtain qr ∈ R and qr+1 . . . qn ∈ R.

(ii)⇒ (i) Assume (ii). Consider a, b ∈ A such that a rprA b and akb ∈ R \ {0}
for some k > 1. We can write a = uql11 . . . qlrr and b = vq

lr+1

r+1 . . . qlss qs+1 . . . qn,
where u, v ∈ A∗, q1, . . . , qn ∈ IrrA, qi 6∼A qj for i 6= j and lr+1, . . . , ls > 1.

We have: akb = ukv(ql11 . . . qlrr )kq
lr+1

r+1 . . . qlss qs+1 . . . qn ∈ R. Then q1, q2, . . . , qs,
qs+1 . . . qn ∈ R. Finally, a, b ∈ R.

The following proposition shows that if we omit the restriction b ∈ Sqf R
in Proposition 4.1, then we obtain usual factorial closedness.
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Proposition 4.5. Let A be a domain. Let R be a subring of A. Then the
following conditions are equivalent:

(i) ∀ a, b ∈ A, ab ∈ R \ {0} ⇒ a, b ∈ R,

(ii) ∀ a, b ∈ A, a2b ∈ R \ {0} ⇒ a, b ∈ R,

(iii) ∀ a, b ∈ A, a3b ∈ R \ {0} ⇒ a, b ∈ R,

(iv) ∀ a, b ∈ A, (a2b ∈ R \ {0} ∨ a3b ∈ R \ {0})⇒ a, b ∈ R,

(v) ∀ a, b ∈ A, ∀ k > 1 (akb ∈ R \ {0} ⇒ a, b ∈ R),

(vi) ∀ a, b ∈ A, ∀ k > 1 (akb ∈ R \ {0} ⇒ a, b ∈ R).

Proof. (ii) ⇒ (i) Assume that (ii) holds. Let ab ∈ R \ {0} for some
a, b ∈ A. Then a2b2 ∈ R \ {0}. By the assumption we have a, b2 ∈ R. Again
using assumption for b2 · 1 ∈ R we have b ∈ R. Finally, a, b ∈ R.

(iii)⇒ (i) Assume that (iii) holds. Let ab ∈ R \ {0} for some a, b ∈ A. Then
a3b3 ∈ R \ {0}. By the assumption we have a, b3 ∈ R. Again using assumption
for b3 · 1 we have b ∈ R. Finally, a, b ∈ R.

Implications: (vi)⇒ (v), (v)⇒ (iv), (iv)⇒ (ii), (iv)⇒ (iii) are obvious.

(i)⇒ (vi) Simple induction.

The last proposition is motivated by a modification of Proposition 4.5.

Proposition 4.6. Let A be a domain. Let R be a subring of A. Then the
following conditions are equivalent:

(i) ∀ a, b ∈ A, ab, a2b ∈ R \ {0} ⇒ a, b ∈ R,

(ii) ∀ a, b ∈ A, a2b, a3b ∈ R \ {0} ⇒ a, b ∈ R,

(iii) ∀ a, b ∈ A (∀ k > 1 akb ∈ R \ {0})⇒ a, b ∈ R,

(iv) ∀ a, b ∈ A (∀k > 1 akb ∈ R \ {0})⇒ a, b ∈ R,

(v) ∀ a, b ∈ A (∃ k0, ∀ k > k0, a
kb ∈ R \ {0})⇒ a, b ∈ R.

Proof. (iii)⇒ (i), (ii), (v) Assume that condition (iii) holds. It is enough
to prove that if akb, ak+1b ∈ R \ {0} for some a, b ∈ A, then ak+2b ∈ R \ {0}
and (if k > 1) ak−1b ∈ R \ {0}.

Assume that akb, ak+1b ∈ R \ {0}, where a, b ∈ A. Since

(akb)l · ak+2b = (ak+1b)2 · (akb)l−1 ∈ R

holds for every l > 1, from the assumption we obtain ak+2b ∈ R. Moreover, if
k > 1, since

(ak+1b)l · ak−1b = (akb)2 · (ak+1b)l−1 ∈ R

also holds for every l > 1, we infer also ak−1b ∈ R.

Implications: (v)⇒ (iv), (iv)⇒ (iii), (i)⇒ (iii), (ii)⇒ (iv) are obvious.
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